测试地址:分手是祝愿
做法:本题需要用到期望DP。
先考虑怎么构造出一个可以完成该游戏并使得步数最小的解。显然我们可以从大到小循环一遍,如果该点上灯是亮的,那么就将它和它的所有约数位置上的灯的状态反转。为什么这是对的呢?因为每个点受它所有倍数的影响,其实这就是一个异或方程组,并且系数排成了一个阶梯的形式,这就表示这个方程组有且仅有一个解,即我们上面构造出的那个。那么构造解的这一步,我们可以通过枚举一个数,再枚举它的所有约数做到
O(nn−−√)
O
(
n
n
)
的复杂度,但也许太慢,最好的方式是枚举一个数,然后枚举它的所有倍数,这样可以做到
∑ni=1ni=O(nlogn)
∑
i
=
1
n
n
i
=
O
(
n
log
n
)
的复杂度。那么我们记下需要操作的次数
num
n
u
m
,继续讨论。
首先若
num≤k
n
u
m
≤
k
,显然期望步数为
num
n
u
m
。否则,令
f(i)
f
(
i
)
为从有
i
i
个待选的开关的状态走到有个待选的开关的状态所需的期望步数。这里我们知道,一个开关操作两次是没有用的,所以我们实际上是选择一些开关操作,而要操作哪些开关我们已经在上面求出来了,只要我们恰好选中了这些开关就可以胜利了。那么这里待选的开关指的就是要选但目前还没选的开关。因此我们有:
f(i)=in+n−in(1+f(i+1)+f(i))
f
(
i
)
=
i
n
+
n
−
i
n
(
1
+
f
(
i
+
1
)
+
f
(
i
)
)
即,有
in
i
n
的概率选中一个待选的开关,有
n−in
n
−
i
n
选中一个不该选的开关,要用
f(i+1)
f
(
i
+
1
)
步走回当前的状态,再用
f(i)
f
(
i
)
步走向下一个状态。移项,得:
f(i)=1+n−ii(1+f(i+1))
f
(
i
)
=
1
+
n
−
i
i
(
1
+
f
(
i
+
1
)
)
边界条件为
f(n)=1
f
(
n
)
=
1
,那么答案显然为
∑numi=k+1f(i)
∑
i
=
k
+
1
n
u
m
f
(
i
)
,这样我们就解决了这一题。别忘了答案要乘
n!
n
!
。
这题真的挺神的,我觉得我目前的水平应该能够想出来,但是还是没想出来……还要继续努力……
以下是本人代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=100003;
int n,k,a[100010],num;
int val[2000010],nxt[2000010]={0},st[2000010]={0},tot=0;
ll f[100010],inv[100010],ans;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
for(int j=1;i*j<=n;j++)
{
val[++tot]=i;
nxt[tot]=st[i*j];
st[i*j]=tot;
}
num=0;
for(int i=n;i>=1;i--)
if (a[i])
{
num++;
for(int j=st[i];j;j=nxt[j])
a[val[j]]=!a[val[j]];
}
if (num<=k) ans=num;
else
{
inv[0]=inv[1]=1;
for(ll i=2;i<=(ll)n;i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
f[n]=1;
for(ll i=(ll)n-1;i>=0ll;i--)
f[i]=(1ll+((ll)n-i)*inv[i]*(1ll+f[i+1]))%mod;
ans=0;
for(int i=k+1;i<=num;i++)
ans=(ans+f[i])%mod;
ans+=k;
}
for(ll i=1;i<=(ll)n;i++)
ans=ans*i%mod;
printf("%lld",ans);
return 0;
}