【BZOJ4785】树状数组(ZJOI2017)-概率+二维线段树+动态开点

测试地址:树状数组
做法:本题需要用到概率+二维线段树+动态开点。
首先分析题目,对树状数组结构熟悉的同学(不熟悉的话…画一画或者打个表也行)就能看出,题目中的数据结构求的是后缀和。那么当我们询问 [l,r] [ l , r ] 时,我们原来是算 [1,l1]xor[1,r]=[l,r] [ 1 , l − 1 ] x o r [ 1 , r ] = [ l , r ] ,现在变成算 [l1,n]xor[r,n]=[l1,r1] [ l − 1 , n ] x o r [ r , n ] = [ l − 1 , r − 1 ] ,那么这两个区间的唯一区别就是 l1 l − 1 r r 这两个点,那么我们算出的区间值相同的概率,就等于这两个点的值相同的概率,于是我们只要算出这个概率即可。
一个直观的思路是维护每个点为1的概率,但我们发现在每次修改时,只能在区间中选择一个点修改,这就意味着如果一个点被修改,另一个就不能被修改,也就是说它们之间的概率不是独立的,因此不能计算。
因此我们考虑直接维护一个二维矩阵,每个点 (x,y) ( x , y ) 上的元素表示点 x x 和点y值相同的概率,一开始均为 1 1 。那么对于每次修改,有一个点在修改区间中的点对有1rl+1的概率相同性发生变化,有两个点在修改区间中的点对有 2rl+1 2 r − l + 1 的概率相同性发生变化(因为一次只能修改一个点)。接下来考虑维护这样的修改,对于一个点对,令该点对原先相同概率为 p p ,修改后相同性不变的概率为q,那么修改后的 p=pq+(1p)(1q) p = p q + ( 1 − p ) ( 1 − q ) 。可以证明当两个修改作用在同一个点上时,这两个修改的顺序不影响结果(这个把式子展开就可以看得出来了),并且两次修改后不变的概率可以合并成 q=q1q2+(1q1)(1q2) q = q 1 q 2 + ( 1 − q 1 ) ( 1 − q 2 ) 。这就显然可以用二维线段树来维护修改了。
接下来,观察到题目的性质是子矩阵修改,单点询问,于是利用标记永久化的思想,每次直接把修改标记记录在对应的节点上,那么询问一个点时,就直接把包含这个点的所有线段树节点上的标记合并起来即可,时间复杂度为 O(nlog2n) O ( n log 2 ⁡ n ) ,空间复杂度用动态开点可以做到 O(nlog2n) O ( n log 2 ⁡ n )
如果你只考虑到了上面这一些,你还是会面临爆 0 0 的结局,因为有一种特殊的询问情况:l=1。注意到在调用树状数组中的函数时,如果 l1=0 l − 1 = 0 就会立刻返回 0 0 ,而不是返回一个区间的值,那么实际上变成了求区间[1,r] [r,n] [ r , n ] 奇偶性相同的概率。于是在修改区间 [l,r] [ l , r ] 时, x x 在区间[1,l1] [r+1,n] [ r + 1 , n ] 中时, [1,x] [ 1 , x ] [x,n] [ x , n ] 的相同性一定变化,否则如果 x x 在区间[l,r]内, [1,x] [ 1 , x ] [x,n] [ x , n ] 的相同性就有 1rl+1 1 r − l + 1 的概率不变,另开一个线段树用和上面类似的方法维护即可。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int N=100010;
int n,m,tot=0,rt[4*N]={0},ch[300*N][2]={0};
ll val[300*N],x;

ll inv(ll x)
{
    ll s=1,ss=x,b=mod-2;
    while(b)
    {
        if (b&1) s=s*ss%mod;
        ss=ss*ss%mod;b>>=1;
    }
    return s;
}

void modify(int &no,int l,int r,int s,int t,ll p)
{
    if (s>t) return;
    if (!no)
    {
        no=++tot;
        val[no]=1;
    }
    if (l>=s&&r<=t)
    {
        val[no]=((val[no]*p+(1-val[no])*(1-p))%mod+mod)%mod;
        return;
    }
    int mid=(l+r)>>1;
    if (s<=mid) modify(ch[no][0],l,mid,s,t,p);
    if (t>mid) modify(ch[no][1],mid+1,r,s,t,p);
}

void query(int no,int l,int r,int pos)
{
    if (!no) return;
    x=((x*((val[no]<<1)-1)+(1-val[no]))%mod+mod)%mod;
    if (l==r) return;
    int mid=(l+r)>>1;
    if (pos<=mid) query(ch[no][0],l,mid,pos);
    else query(ch[no][1],mid+1,r,pos);
}

void Modify(int no,int l,int r,int s1,int t1,int s2,int t2,ll p)
{
    if (s1>t1||s2>t2) return;
    if (l>=s1&&r<=t1)
    {
        modify(rt[no],1,n,s2,t2,p);
        return;
    }
    int mid=(l+r)>>1;
    if (s1<=mid) Modify(no<<1,l,mid,s1,t1,s2,t2,p);
    if (t1>mid) Modify(no<<1|1,mid+1,r,s1,t1,s2,t2,p);
}

void Query(int no,int l,int r,int pos1,int pos2)
{
    query(rt[no],1,n,pos2);
    if (l==r) return;
    int mid=(l+r)>>1;
    if (pos1<=mid) Query(no<<1,l,mid,pos1,pos2);
    else Query(no<<1|1,mid+1,r,pos1,pos2);
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int op,l,r;
        scanf("%d%d%d",&op,&l,&r);
        if (op==1)
        {
            ll p=inv(r-l+1);
            Modify(1,1,n,1,l-1,l,r,(1-p+mod)%mod);
            Modify(1,1,n,l,r,r+1,n,(1-p+mod)%mod);
            Modify(1,1,n,l,r,l,r,(1-(p<<1)+(mod<<1))%mod);
            modify(rt[0],1,n,1,l-1,0);
            modify(rt[0],1,n,r+1,n,0);
            modify(rt[0],1,n,l,r,p);
        }
        else
        {
            x=1;
            if (l==1) query(rt[0],1,n,r);
            else Query(1,1,n,l-1,r);
            printf("%lld\n",x);
        }
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值