测试地址:方伯伯运椰子
做法:本题需要用到01分数规划+SPFA判负环。
我们先尝试找到另一种更好的描述压缩和扩容方案的方法,我们发现,实际上压缩就是在退流,扩容就是在增广,那么我们知道,要找到一种方法使得总流量不变,只需要沿着残余网络中的某一个环走就行了。因此一条反向边走一次需要花费
a−d
a
−
d
(即退流),一条正向边走一次需要花费
b+d
b
+
d
(即增广)。我们又发现,操作次数实际上就相当于环上走过的边的数量。
知道了上述转化方法,又有什么用呢?分析最后求的式子,是一个比值,我们很快想到用01分数规划的方法解决。
考虑二分比值
mid
m
i
d
,问题转化为判定有没有一种增广方案使得比值大于
mid
m
i
d
,那么有:
X−Yk>mid
X
−
Y
k
>
m
i
d
所以有:
X−Y>k⋅mid
X
−
Y
>
k
⋅
m
i
d
又因为
Y=X+∑w
Y
=
X
+
∑
w
(
∑w
∑
w
为走过的环上的花费和),有:
−(∑w)−k⋅mid>0
−
(
∑
w
)
−
k
⋅
m
i
d
>
0
所以有:
∑(w+mid)<0
∑
(
w
+
m
i
d
)
<
0
若以
w+mid
w
+
m
i
d
为边权的图中有负环,那么上述条件成立,即表示存在更大的答案。使用SPFA判负环即可。
以下是本人代码:
#include <bits/stdc++.h>
using namespace std;
const double eps=1e-3;
const double inf=1e9;
int n,m,u[3010],v[3010],first[5010],tot,vis[5010];
double a[3010],b[3010],c[3010],d[3010],dis[5010];
bool inque[5010];
struct edge
{
int v,next;
double w;
}e[10010];
queue<int> Q;
bool spfa()
{
memset(inque,0,sizeof(inque));
while(!Q.empty()) Q.pop();
for(int i=1;i<=n;i++)
Q.push(i),inque[i]=1;
while(!Q.empty())
{
int v=Q.front();Q.pop();
vis[v]++;
if (vis[v]>n) return 1;
for(int i=first[v];i;i=e[i].next)
if (dis[v]+e[i].w<dis[e[i].v])
{
dis[e[i].v]=dis[v]+e[i].w;
if (!inque[e[i].v]) Q.push(e[i].v),inque[e[i].v]=1;
}
inque[v]=0;
}
return 0;
}
void insert(int a,int b,double w)
{
e[++tot].v=b,e[tot].next=first[a],e[tot].w=w,first[a]=tot;
}
bool check(double mid)
{
memset(first,0,sizeof(first));
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
tot=0;
for(int i=1;i<m;i++)
{
if (c[i]) insert(v[i],u[i],a[i]-d[i]+mid);
insert(u[i],v[i],b[i]+d[i]+mid);
}
return spfa();
}
int main()
{
scanf("%d%d",&n,&m);
n+=2;
for(int i=1;i<=m;i++)
scanf("%d%d%lf%lf%lf%lf",&u[i],&v[i],&a[i],&b[i],&c[i],&d[i]);
double l=0.0,r=inf;
while(r-l>=eps)
{
double mid=(l+r)/2.0;
if (check(mid)) l=mid;
else r=mid;
}
printf("%.2lf",l);
return 0;
}