测试地址:游戏
做法:本题需要用到线性筛+组合计数。
首先我们知道,如果一个数在区间内没有除了它自己以外的因数,那么这个数就必须要取,不然不能满足所有数都被取过。再然后,如果一个数在区间内有除了它自己以外的因数,那它就没有必要取了,也就是说取这个数是多余的,因为它的某一个因数是一定要取的,那么在它被取的时候这个数就已经被取了。由这两个结论,我们得出一个排列
p
p
的就等于那些在区间内没有除了自己以外因数的数,在排列
p
p
中最后一个出现的位置。
现在有两个问题,一个是如何求一个数是不是在区间内没有除自己以外的因数,另一个是如何统计所有排列的
t(p)
t
(
p
)
之和。
对于第一个问题,我们显然要找到该数除了自己以外的最大的因数,如果这个因数不在区间中,就表示这个数在区间中没有除自己以外的因数。显然这个因数等于原数除以它最小的质因子,而区间
[l,r]
[
l
,
r
]
中所有数的最小的质因子可以通过线性筛来
O(n)
O
(
n
)
算出,于是我们解决了这一个问题。
对于第二个问题,令所有在区间中没有除自己以外因数的数的个数为
tot
t
o
t
,考虑求满足
t(p)=i(tot≤i≤r−l+1)
t
(
p
)
=
i
(
t
o
t
≤
i
≤
r
−
l
+
1
)
的排列数目,显然此时满足条件的排列数为
Ctot−1i−1⋅tot!⋅(n−tot)!
C
i
−
1
t
o
t
−
1
⋅
t
o
t
!
⋅
(
n
−
t
o
t
)
!
,可以化简为
tot⋅(n−tot)!⋅(i−1)!(i−tot)!
t
o
t
⋅
(
n
−
t
o
t
)
!
⋅
(
i
−
1
)
!
(
i
−
t
o
t
)
!
。于是有:
ans=tot⋅(n−tot)!⋅∑r−l+1i=toti⋅(i−1)!(i−tot)!
a
n
s
=
t
o
t
⋅
(
n
−
t
o
t
)
!
⋅
∑
i
=
t
o
t
r
−
l
+
1
i
⋅
(
i
−
1
)
!
(
i
−
t
o
t
)
!
O(n)
O
(
n
)
预处理阶乘和阶乘的逆元后即可
O(n)
O
(
n
)
算出这个式子,那么我们就解决了这一题。
从机房大佬那里学了一个求阶乘和阶乘逆元的常数很小的方法:先简单地求出阶乘,再快速幂算出
n!
n
!
的逆元,然后倒着推出阶乘的逆元,即
inv((i−1)!)=inv(i!)⋅imodmod
i
n
v
(
(
i
−
1
)
!
)
=
i
n
v
(
i
!
)
⋅
i
mod
m
o
d
,这样可以极大地减小取模的常数,在这种卡常题中特别有用。
以下是本人代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
int l,r,prime[2000010],low[10000010];
ll fac[10000010],inv[10000010],ans=0;
void calc_prime()
{
prime[0]=0;
low[1]=1;
for(int i=2;i<=r;i++)
{
if (!low[i])
{
prime[++prime[0]]=i;
low[i]=i;
}
for(int j=1;j<=prime[0]&&i*prime[j]<=r;j++)
{
low[i*prime[j]]=prime[j];
if (i%prime[j]==0) break;
}
}
}
ll power(ll a,ll b)
{
ll s=1,ss=a;
while(b)
{
if (b&1) s=s*ss%mod;
ss=ss*ss%mod;b>>=1;
}
return s;
}
int main()
{
scanf("%d%d",&l,&r);
calc_prime();
fac[0]=fac[1]=1;
inv[0]=inv[1]=1;
for(ll i=2;i<=r;i++)
fac[i]=fac[i-1]*i%mod;
inv[r]=power(fac[r],mod-2);
for(ll i=r;i>=1;i--)
inv[i-1]=inv[i]*i%mod;
int tot=0;
for(int i=l;i<=r;i++)
if (i/low[i]<l) tot++;
if (l==1) tot++;
for(ll i=tot;i<=r-l+1;i++)
ans=(ans+fac[i]*inv[i-tot]%mod)%mod;
printf("%lld",ans*tot%mod*fac[r-l+1-tot]%mod);
return 0;
}