【BZOJ3590】Quare(SNOI2013)-状压DP

测试地址:Quare
题目大意:给定一张无向图,有 n(12) n ( ≤ 12 ) 个点和 m(40) m ( ≤ 40 ) 条边,要从里面选出一个边权和最小的包含所有点的边双连通子图,求最小的边权和。
做法:本题需要使用状压DP。
注意到,每一个边双连通分量都可以通过删边成为一个环,而边权都是非负的,所以最优解一定是许多个环接在一起,因此我们可以用一个边双连通分量加上一条链构成一个新的边双连通分量。具体来说,我们要求:
f(i) f ( i ) :包含点集 i i 的边双连通分量的最小边权和。
h(i,j,0/1):一个不属于点集 j j 的点i到点集 j j 中边的最小值和次小值。
g(i,j,k):包含点集 i i 的两端为点j,k的链的最小边权和。
具体求的步骤如下:
h h 直接O(2nn2)枚举即可。
g g 的话,可以枚举一个集合,在集合中枚举两个点u,v,再枚举 v v 能到达的点t,用 g(now,u,v) g ( n o w , u , v ) 更新 g(next,u,t) g ( n e x t , u , t ) 。用邻接表可以做到 O(2nnm) O ( 2 n n m )
最后就是求 f f 了,上面说了,可以用一个边双连通分量加上一条链构成一个新的边双连通分量,因此用枚举子集的状压DP做即可,即每次枚举补集内的两个点,用端点为这两个点的,包含某个补集的子集的链,加上这两个点与点集的最小边来更新。注意如果枚举的两个点重合,那么我们需要用这个点和点集的最小边和次小边来更新。这就是h g g 的用处了。这一步的时间复杂度为O(3nn2),其实常数很小,再稍微卡卡常就能过了。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf=1000000000ll*1000000000ll;
int T,n,m,first[20]={0},tot=0;
ll h[15][5010][2],g[5010][15][15],f[5010];
struct edge
{
    int u,v,next;
    ll d;
}e[100];

void insert(int a,int b,ll d)
{
    e[++tot].u=a;
    e[tot].v=b;
    e[tot].next=first[a];
    e[tot].d=d;
    first[a]=tot;
}

int num(int x)
{
    int sum=0;
    while(x)
    {
        if (x&1) sum++;
        x>>=1;
    }
    return sum;
}

int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);

        memset(first,0,sizeof(first));
        tot=0;
        for(int i=1;i<=m;i++)
        {
            int x,y;
            ll d;
            scanf("%d%d%lld",&x,&y,&d);
            insert(x,y,d),insert(y,x,d);
        }

        for(int i=0;i<(1<<n);i++)
            for(int j=1;j<=n;j++)
            {
                h[j][i][0]=h[j][i][1]=inf;
                if ((1<<(j-1))&i) continue;
                for(int k=first[j];k;k=e[k].next)
                    if ((1<<(e[k].v-1))&i)
                    {
                        if (h[j][i][0]>e[k].d)
                        {
                            h[j][i][1]=h[j][i][0];
                            h[j][i][0]=e[k].d;
                        }
                        else h[j][i][1]=min(h[j][i][1],e[k].d);
                    }
            }

        for(int i=0;i<(1<<n);i++)
            for(int j=1;j<=n;j++)
                for(int k=1;k<=n;k++)
                    g[i][j][k]=inf;
        for(int i=1;i<=n;i++)
            g[1<<(i-1)][i][i]=0;
        for(int i=1;i<=tot;i++)
        {
            int u=e[i].u,v=e[i].v,s=(1<<(u-1))|(1<<(v-1));
            g[s][u][v]=min(g[s][u][v],e[i].d);
        }
        for(int i=1;i<(1<<n);i++)
            for(int j=1;j<=n;j++)
                for(int k=1;k<=n;k++)
                    if (((1<<(j-1))&i)&&((1<<(k-1))&i))
                    {
                        for(int t=first[k];t;t=e[t].next)
                        {
                            if (!((1<<(e[t].v-1))&i))
                            {
                                int nxt=i|(1<<(e[t].v-1));
                                g[nxt][j][e[t].v]=min(g[nxt][j][e[t].v],g[i][j][k]+e[t].d);
                            }
                        }
                    }

        for(int i=1;i<=n;i++)
            f[1<<(i-1)]=0;
        for(int i=1;i<(1<<n);i++)
            if (num(i)>1)
            {
                f[i]=inf;
                for(int j=((i-1)&i);j>0;j=((j-1)&i))
                    for(int k=1;k<=n;k++)
                        if ((1<<(k-1))&j)
                        {
                            for(int l=1;l<=n;l++)
                                if ((1<<(l-1))&j)
                                {
                                    if (k==l) f[i]=min(f[i],f[i-j]+g[j][k][k]+h[k][i-j][0]+h[k][i-j][1]);
                                    else f[i]=min(f[i],f[i-j]+g[j][k][l]+h[k][i-j][0]+h[l][i-j][0]);
                                }
                        }
            }

        if (f[(1<<n)-1]==inf) printf("impossible\n");
        else printf("%lld\n",f[(1<<n)-1]);
    }

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值