合成孔径雷达SAR斑马图的绘制

图1 斑马图及不同波位PRF选择

1.参考文献

斑马图是在合成孔径雷达设计中,非常重要的一个工具,利用斑马图可以很方便的去选取PRF,减少方位模糊和距离模糊。关于PRF和斑马图的技术细节这里不再赘述,感兴趣的朋友可以去找下这篇文献看下:

[1]朱力,于立.星载合成孔径雷达(SAR)斑马图仿真与研究[J].计算机仿真, 2003, 20(5):4.DOI:10.3969/j.issn.1006-9348.2003.05.040.

[2]易锋,刘春静.基于斑马图的天基雷达PRF设计[J].雷达科学与技术, 2015, 13(6):4.DOI:10.3969/j.issn.1672-2337.2015.06.019.

2.斑马图怎么看

因为SAR是个比较冷门的领域,虽然有几篇文章提到了斑马图,但是怎么看斑马图,怎么用斑马图,怎么画斑马图都语焉不详,比较容易搜到的资源和文章也有不少错误。前段时间花了两天研究这个事情,这里写个文章记录下画斑马图的过程,如果对您有帮助,还请点个赞。

先解释一下斑马图怎么看,斑马图的横轴是PRF,即脉冲重复频率,纵轴是地距,也可以是入射角/地心角/下视角/时间(这些参数都可以互相转换,这个很重要)

图2 SAR成像几何示意图

斑马图上有黑色和蓝色的条纹,蓝色代表发射的脉冲宽度,黑色代表星下点回波的脉冲宽度。SAR的发射和接受不能同时进行,而星下点回波会对图像质量造成严重影响,所以,黑色和蓝色之间的白色区域,就是可选的PRF区间。图1的纵轴是地距(ground range),那么红色的线条可以理解为成像的幅宽,即在这个PRF上,可以选取的幅宽。这十几个长块就是根据不同的波位,幅宽,在斑马图中选出的PRF,可以看到地距覆盖了70~500km的所有区域,由于地距和波位是可以相互转换的,那这个斑马图实际的意义是,在这个幅宽下,所有的波位都可以选到PRF。所以,幅宽和波位的设计是合理的。

3.斑马图怎么画

上文提到了时间(一个PRI之内),下视角(Off-Nadir Angle),入射角(Incidence Angle)都可以互相转换。这里直接给出matlab代码。

%输入:
%t,一个PRI之内的时间
%h,轨道高度
%输出:
%rs:地距
function rs=time2rs(t,h)
c=3e8;
re=6378137;
r=t*c/2;
alpha=acos((r^2+(re+h)^2-re^2)/(2*r*(re+h)));
theta=asin((re+h)*sin(alpha)/re);
rs=(theta-alpha)*re;
end

图3 SAR成像几何示意图

如图3所示,Rn和Rf是最小斜距和最大斜距,斜距和时间的转换很好理解,就是波传播一个来回的时间,tn=2*c/Rn,时间和地距的转换其实就是先把时间转换成斜距(Slant Range),再根据斜距通过通过正弦和余弦定理计算出地心角\beta _{n},根据圆弧周长公式将\beta _{n}转换成地距BC。

地心角\beta _{n}和入射角\theta _{n}以及下视角\alpha _{n}的关系如下:

\beta _{n}=\theta_{n} -\alpha_{n}

所以画斑马图实际上就是根据脉冲宽度\tau,求一个PRI内发射的上下沿时间T1,T2,以及星下点回波的上下沿时间Tnad1,Tnad2,再把时间转成地距即可,具体公式文章里都有,下面简单列一下:

具体算法如下:

首先确定最小PRF和最大PRF,PRF_{_{_{min}}}=2*ka*v/l_{a},其中ka是保护系数,ka大于1,v是飞行速度,la是天线方位向长度,最大PRF根据实际设计确定。

然后确定PRF采样间隔,如:

prf=prf_min:5:prf_max;

计算imax,imin,jmax,jmin,这个过程和文章是完全一致的。

beta_min=asin((re+h)*sin(alpha_min)/re)-alpha_min;
beta_max=asin((re+h)*sin(alpha_max)/re)-alpha_max;
rg_min=sin(beta_min)*re/sin(alpha_min);
rg_max=sin(beta_max)*re/sin(alpha_max);

t_n=2*rg_min/c;
t_f=2*rg_max/c;
t_nad=2*h/c-tg_min;
j_min=floor(t_n*prf_min);
j_max=floor(t_f*prf_max);
i_min=j_min-floor((t_nad+tr_min+2*tg_min)*prf_min);
i_max=j_max-floor(t_nad*prf_max);

计算发射信号干扰带:

for j=j_min:j_max
    for k=1:length(prf)
        pri=1/prf(k);%PRF转PRI
        tr=pri*tao;%PRI*发射占空比tao
        tg=tr*tao_l;%发射时间*发射保护占空比tao_l

        %计算发射信号干扰带
        t_min(k)=j/prf(k)-tr-tg;
        t_max(k)=j/prf(k)+(tr+tg);
        r2_min(k)=time2rs(t_min(k),h);
        r2_max(k)=time2rs(t_max(k),h);
    end
    fill([prf,flip(prf)],[r2_min,flip(r2_max)]/1e3,'b')
    hold on
end

计算星下点回波干扰带:

for i=i_min:i_max
    for k=1:length(prf)
        pri=1 / prf(k);%PRF转PRI
        tr=pri*tao;%PRI*发射占空比tao
        tg=tr*tao_l;%发射时间*发射保护占空比tao_l

        %计算星下点回波干扰带
        t_min(k)=2*h/c+i/prf(k)-tr-tg;
        t_max(k)=2*h/c+i/prf(k)+(tr+tg);
        r1_min(k)=time2rs(t_min(k),h);
        r1_max(k)=time2rs(t_max(k),h);
    end
    fill([prf,flip(prf)],[r1_min,flip(r1_max)]/1e3,'k')
    hold on
end

由于参数不同,完整代码我就不贴了,拒绝伸手党,大家感兴趣可以自己动手完成一下。如果感觉这篇文章对您有帮助,还请动动小手点一个赞,谢谢!

### 绘制极化 SAR 示意的方法 要绘制极化合成孔径雷达 (Polarimetric Synthetic Aperture Radar, PolSAR) 的示意,可以利用 Python 或 MATLAB 中的相关库来实现。以下是两种方式的具体说明。 #### 使用 Python 进行绘 Python 是一种强大的编程语言,在数据可视化方面具有广泛的应用场景。通过 `matplotlib` 库以及可能涉及的其他科学计算库(如 NumPy),可以完成复杂形的设计与展示。 ```python import numpy as np import matplotlib.pyplot as plt # 创建一个简单的极化 SAR 形表示 fig, ax = plt.subplots() # 设置坐标轴范围 ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) # 添加圆圈代表目标区域 circle = plt.Circle((0, 0), radius=0.8, color='blue', fill=False, linewidth=2) ax.add_artist(circle) # 添加箭头表示不同的极化方向 arrow_vv = plt.Arrow(0, -0.5, 0, 0.4, width=0.05, color="red", label="VV") arrow_hh = plt.Arrow(0, 0.5, 0, -0.4, width=0.05, color="green", label="HH") ax.add_patch(arrow_vv) ax.add_patch(arrow_hh) plt.title("PolSAR Polarization Diagram Example") plt.legend([arrow_vv, arrow_hh], ["VV", "HH"]) plt.axis('equal') plt.show() ``` 上述代码展示了如何创建一个基本的极化 SAR 极化模式示意形[^1]。其中使用了圆形和箭头分别表示目标覆盖区及其对应的垂直-垂直(VV) 和水平-水平(HH) 极化分量。 #### 使用 MATLAB 实现相同功能 MATLAB 同样提供了丰富的函数用于生成高质量的技术表。下面是一个简单例子: ```matlab % 初始化画布 figure; hold on; % 圆心置及半径定义 centerX = 0; centerY = 0; radius = 0.8; % 绘制圆周作为边界框 th = linspace(0,2*pi); xunit = radius * cos(th) + centerX; yunit = radius * sin(th) + centerY; plot(xunit, yunit,'b','LineWidth',2); % 描绘 VV 及 HH 方向矢量 quiver(centerX, centerY-radius/2, 0, radius*0.9, 'Color', 'r'); text(centerX+0.1, centerY-radius/4, 'VV'); quiver(centerX, centerY+radius/2, 0, -radius*0.9, 'Color', 'g'); text(centerX+0.1, centerY+radius/4, 'HH'); title('PolSAR Polarization Diagram Example'); axis equal; legend({'Boundary'},'Location','BestOutside'); grid off; box on; ``` 此脚本同样构建了一个基础版的 PolSAR 极化状态分布模型,并标注出了两个主要的线性极化成分——即 VV 和 HH[^2]。 ### 结论 无论是采用 Python 抑或是 MATLAB 来制作此类技术插,都需依据具体需求调整参数设置以达到最佳视觉效果。以上仅提供了一种通用解决方案供参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值