在人工智能的浪潮中,AI代理(AI Agent)扮演着越来越重要的角色。它们不仅模拟人类智能行为,而且通过大型语言模型(LLM)作为核心引擎,实现自主决策和任务执行。
AI Agent的定义与应用
AI Agent,也称为AI智能体,是人工智能系统的一个分支,它们能够感知环境,做出决策,并执行任务以实现特定目标。AI Agent的应用领域广泛,包括客户服务、医疗诊断、股市交易、智能交通和教育辅导等。
AI Agent的架构
AI Agent的决策流程可以通过感知(Perception)、规划(Planning)和行动(Action)三个基本步骤来概括,简称PPA模型。这个模型是AI Agent智能行为的基础,支撑其与环境的交互和自主决策。
感知:AI代理通过感知系统从环境中收集信息,如文本、图像、声音等。
规划:收集到信息后,AI代理需要规划系统来确定如何达到目标。
行动:最后,AI代理根据规划的结果执行行动。
记忆机制
AI Agent的记忆机制是其学习和决策过程中不可或缺的一部分,包括感觉记忆、短期记忆和长期记忆。
感觉记忆:存储通过感官接收到的信息的印象。
短期记忆:储存当前意识到的信息,用于执行复杂的认知任务。
长期记忆: