AI+技术 | 一文读懂以LLM为核心的AI Agent的架构指南

在人工智能的浪潮中,AI代理(AI Agent)扮演着越来越重要的角色。它们不仅模拟人类智能行为,而且通过大型语言模型(LLM)作为核心引擎,实现自主决策和任务执行。

AI Agent的定义与应用

AI Agent,也称为AI智能体,是人工智能系统的一个分支,它们能够感知环境,做出决策,并执行任务以实现特定目标。AI Agent的应用领域广泛,包括客户服务、医疗诊断、股市交易、智能交通和教育辅导等。

AI Agent的架构

AI Agent的决策流程可以通过感知(Perception)、规划(Planning)和行动(Action)三个基本步骤来概括,简称PPA模型。这个模型是AI Agent智能行为的基础,支撑其与环境的交互和自主决策。

图片

感知:AI代理通过感知系统从环境中收集信息,如文本、图像、声音等。

规划:收集到信息后,AI代理需要规划系统来确定如何达到目标。

行动:最后,AI代理根据规划的结果执行行动。

图片

记忆机制

AI Agent的记忆机制是其学习和决策过程中不可或缺的一部分,包括感觉记忆、短期记忆和长期记忆。

感觉记忆:存储通过感官接收到的信息的印象。

短期记忆:储存当前意识到的信息,用于执行复杂的认知任务。

长期记忆:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值