自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 收藏
  • 关注

原创 关于卡尔曼滤波的问题请教

例如如果目标以上图运动形式进行运动,我们无法事先建立准确的运动模型,就导致我们无法写出正确的状态转移矩阵和观测矩阵。在这种情况下是不是只能做最简单的数据融合?而且当观测到的是距离而非坐标时,连数据融合都无法做到?无论是扩展卡尔曼滤波还是无迹卡尔曼滤波,都是为了解决非线性的问题。但是现实情况下,无论是简单的cv模型、ca模型还是稍微复杂一些的ctrv、ctra模型,还是csav、cca模型都无法完全描述现实中的运动。最近在学习卡尔曼滤波及相关的延申滤波,心中有一个疑问,以下是我对卡尔曼滤波的理解,请。

2023-06-18 08:35:53 101 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除