自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 自动驾驶中数据为中心的进化:大数据系统、数据挖掘和闭环技术综述

本文节选自2024年1月--悉尼大学、Data61公司、比亚迪公司、圣母院(NotreDame)大学、南方科技大学的论文《Data-CentricEvolutioninAutonomousDriving:AComprehensiveSurveyofBigDataSystem,DataMining,andClosed-LoopTechnologies》。下一代自动驾驶(AD)技术的愿望依赖于智能感知、预测、规划和低级控制之间的集成和交互。自动驾驶算法性能的上限一直存在巨大的瓶

2025-01-18 19:35:35 768

原创 汽车网络安全及相关评估管理方法

汽车网络安全的根本目的在于确保资产的安全,这不仅包括通过预测潜在攻击(即风险)来进行防护,还包括为产品和服务的生产制定相应的对策措施。上海伊世智能科技提供了一种全面、有效、可操作的智能网联汽车网络安全评估方法,能够帮助车企和相关机构识别和防范网络安全威胁,提高智能网联汽车的安全性,具有重要的实用价值和应用前景。北京云驰未来科技利用数字孪生技术,为汽车网络安全管理提供了一种新的解决方案,具有全面性、直观性、高效性和智能化等优点,有助于提高车辆的安全性,并推动汽车行业的数字化转型。

2025-01-12 18:13:48 586

原创 通过 RL 微调改善自动驾驶的智体行为

自动驾驶汽车研究的一个主要挑战是建模智体行为,它具有关键的应用,包括为非车载评估构建逼真可靠的模拟,以及为车内规划预测交通智体运动。随机射击策略,以模型预测控制 (MPC) 方式运行:在每个时间步骤中,随机射击策略从固定的 J 条轨迹库中采样,这些轨迹是通过在 D 步中保持单个方向盘角度和加速度生成的。此过程在整个推出过程中重复进行。例如,日志重放具有完美的零 ADE,但对于模拟智体来说,这是一个糟糕的选择,因为它是非反应性的。然后,当场景中的交通智体由模拟智体模型控制时,评估这些 AD 规划器的性能。

2025-01-12 18:06:47 1860

原创 GenFollower:利用大语言模型增强跟车预测

其次,虽然基于深度学习的方法取得了有希望的结果,但它们的黑箱性质带来了挑战,因为它们会生成未来行为的预测,而不会对其输出提供实质性的解释,因此很难理解它们决策背后的原因。值得注意的是, [1][2][3] 的研究已成功利用 LLM 完成与自动驾驶相关的任务,例如运动规划和感知,凸显了它们对该领域的潜在贡献。这为 LLM 在跟车方面的探索铺平了道路,这是自动驾驶的一个关键方面,目前的 LLM 研究仍未解决。它概述了 LLM 在预测跟车行为中的作用,指定了所使用的输入信息,并定义了输出预测的格式。

2025-01-12 18:04:53 577

原创 ViP3D: 通过3D智体query实现端到端视觉轨迹预测

此外,提出一种新的端到端视觉轨迹预测任务的评估指标,端到端预测精度(EPA,End-to-end Prediction Accuracy),其在综合考虑感知和预测精度的同时,对预测轨迹与地面真实轨迹进行评分。ViP3D的总体流程如上图所示:首先,基于查询的跟踪器处理来自周围摄像机的多视图视频,获得有视觉特征所跟踪智体的query。智体query中的视觉特征,捕获智体的运动动力学和视觉特征,以及智体之间的关系。之后,轨迹预测器将跟踪智体的query作为输入,并与HD地图特征相关联,最后输出预测的轨迹。

2025-01-12 18:02:47 729

原创 具有改进3D扩散策略的可通用人形机器人操控

基于图像的模仿学习方法,如扩散策略 [12],取得了显著的成功 [10]、[17]、[22]、[30]、[45],但它们有限的泛化能力限制了它们在复杂的现实环境中应用。尽管如此,3D 视觉运动策略本质上依赖于精确的相机标定和细粒度的点云分割 [17]、[18]、[21]、[39]、[47],这限制了它们在人形机器人等移动平台上的部署。最近,基于学习的方法已显示出实现这一目标的良好进展,特别是在运动 [36]、[49]–[52]、操纵 [9]、[11]、[53] 和机动操纵 [6]–[8]、[54] 领域。

2025-01-12 17:58:55 1716

原创 DexGrip:具有灵巧抓握和手中操作能力的多模态软夹持器

因此,操纵可以促进目标的独立定位或调整其方向以增加与活动表面手指的接触面积,从而实现更稳定的抓握和为旋转扩大的自由度。然而,在这些领域执行更复杂的任务通常需要重抓取和重定位目标,这大大增加了机器人操纵器控制系统的复杂性,因为需要额外的运动规划和防撞策略 [4]。最后,活动手掌还有三个额外的自由度,可以增强抓握能力,并通过伸展/收缩、吸力和扭转运动促进与目标的互动。第二个组件是专用的主动手掌,具有用于粘附和扭转目标的主动吸盘,以及由 Dynamixel 电机驱动的伸缩机构,用于线性运动。

2025-01-12 15:35:47 1451

博世未来汽车电子电气架构演进及关键技术趋势解析

内容概要:该文章主要探讨了博世对未来汽车行业发展的洞察及其在电子电气(E/E)架构领域的创新解决方案和技术发展趋势。文章首先回顾了当前城市交通面临的挑战(如拥堵、排放和道路安全),并提出为应对这些痛点需要引入更高效的自动驾驶与互联汽车系统。接着详细介绍了几项关键技术创新,包括车载计算机(Vehicle Computer)、运行时环境(Vehicle Runtime Environment)、高速车内外通信网络(Gbit Ethernet 和 5G 连接)、云端服务平台以及信息安全保障措施。此外还强调了安全电源网的重要性,并阐述了随着自动化程度不断提高所带来的一系列需求变化。为了确保车辆的安全性和可靠性,在自动辅助驾驶级别较高的情况下特别指出了冗余机制的设计理念。最后提到了系统工程方法论的变化,以及跨部门协作的重要性以应对新的开发模式转变。 适合人群:对于汽车工程技术人员,尤其对正在探索下一代智能网联车辆开发的技术经理和研究人员最为有益。 使用场景及目标:该材料不仅有助于深入了解未来智慧移动出行的发展趋势及核心技术,同时也为行业内企业提供了制定长期战略规划所需的数据支持。 其他说明:博世作为全球领先的汽车零部件供应商之一,在文中提出了关于未来汽车产业变革的方向性预测和技术实施路径,反映了行业内部专家对未来几年乃至几十年间市场动向的专业判断与期望。这些建议和洞见能够帮助制造商更好地准备迎接即将到来的技术革新,加快转型速度,同时提高产品性能和服务水平。

2025-01-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除