爬楼梯问题【线性DP】【一维】【矩阵快速幂】

两个爬楼梯的题,一个2*2, 一个是3*3。

Description: 爬楼梯游戏

题目来源:https://www.acwing.com/problem/content/description/3683/

一个楼梯共有 n n n级台阶,每次可以走一级或者两级,问从第 0 0 0级台阶走到第 n n n级台阶一共有多少种方案。

输入格式

一个整数 n n n

输出格式

一个整数,表示方案总数。

由于结果很大,因此只需输出对 1000000007 1000000007 1000000007取模后的值。

数据范围

1 ≤ n ≤ 1 0 18 1\leq{n}\leq{10^{18}} 1n1018

输入样例:
5
输出样例:
8

Answer:

解题思路:

思考一下,我们怎么才能到达第 i i i个台阶呢,一共有2种方法:

  • i − 1 i-1 i1阶迈1阶;
  • i − 2 i-2 i2阶迈2阶;

所以迈向第 i i i阶的方法数就是迈向第 i − 1 , i − 2 i-1, i-2 i1,i2阶的方法之和。

即: d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i]=dp[i-1]+dp[i-2] dp[i]=dp[i1]+dp[i2]。当然还要考虑初始化的问题, d p [ 1 ] = 1 , d p [ 2 ] = 2 dp[1]=1, dp[2]=2 dp[1]=1,dp[2]=2

这样我们就得到了一个递推式,打表就可以。但是我们看到了题目中 n n n​​​的范围很大,时间复杂度肯定很高,因此我们可以使用矩阵快速幂来做。

其实只要涉及递推式的动态规划,一般都可以使用矩阵快速幂来进行优化。(目前接触的算法比较少,但是就目前来看,这个很实用)

在这里插入图片描述

AC代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define MAXNUM 1000000007  

//矩阵乘法 2*2
vector<vector<ll>> multiply(vector<vector<ll>> a, vector<vector<ll>> b){
    //不要忘记初始化
    vector<vector<ll>> res{{0,0},{0,0}};
    for(ll i=0; i<a.size(); i++){
        for(ll j=0; j<b.size(); j++){
            res[i][j] = ( (a[i][0]%MAXNUM)*(b[0][j]%MAXNUM)%MAXNUM + (a[i][1]%MAXNUM)*(b[1][j]%MAXNUM)%MAXNUM )%MAXNUM;
        }
    }
    return res;
}
//矩阵快速幂
vector<vector<ll>> qpow(vector<vector<ll>> a, ll n){
    if(n == 0) return {{1,0},{0,1}};
    else if( n&1 ){//奇数
        return multiply(qpow(a, n-1), a);
    }else{
        vector<vector<ll>> temp = qpow(a, n/2);
        return multiply(temp, temp);
    }
}

int main(){
    ll n;
    cin>>n;
    vector<vector<ll>> res = qpow({{0,1},{1,1}}, n-1);
    cout<<((res[0][0]%MAXNUM)+2*(res[0][1]%MAXNUM))%MAXNUM<<endl;
    
    return 0;
}

Description: 面试题 08.01.三步问题

题目来源(leetcode):https://leetcode-cn.com/problems/three-steps-problem-lcci/

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:

输入:n = 3

输出:4

说明: 有四种走法

示例2:

输入:n = 5

输出:13

提示:n范围在[1, 1000000]之间

Answer:

和上个题思路是一样的。 d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] + d p [ i − 3 ] dp[i]=dp[i-1]+dp[i-2]+dp[i-3] dp[i]=dp[i1]+dp[i2]+dp[i3], 初始值: d p [ 1 ] = 1 , d p [ 2 ] = 2 , d p [ 3 ] = 4 dp[1]=1, dp[2]=2, dp[3]=4 dp[1]=1,dp[2]=2,dp[3]=4

在这里插入图片描述

AC代码:

class Solution {
public:
    const int mod = 1000000007;
    //矩阵乘法 3*3
    vector<vector<long long>> multiply(vector<vector<long long>> a, vector<vector<long long>> b){
        vector<vector<long long>> res{{0,0,0},{0,0,0},{0,0,0}};
        for(int i=0; i<a.size(); i++){
            for(int j=0; j<b.size(); j++){
                res[i][j] = ( (((a[i][0]%mod)*(b[0][j]%mod))%mod + ((a[i][1]%mod)*(b[1][j]%mod))%mod )%mod
                		+ ((a[i][2]%mod)*(b[2][j]%mod))%mod)%mod;
            }
        }
        return res;
    }
    //矩阵快速幂
    vector<vector<long long>> qpow(vector<vector<long long>> a, int n){
        if(n==0) return {{1,0,0},{0,1,0},{0,0,1}};
        else if( n&1 ){
            return multiply(qpow(a, n-1), a);
        }else{
            vector<vector<long long>> temp = qpow(a, n/2);
            return multiply(temp, temp);
        }
    }
    int waysToStep(int n) {
        vector<vector<long long>> res = qpow({{0,1,0},{0,0,1},{1,1,1}}, n-1);
        return (int)((res[0][0]+res[0][1]*2%mod)%mod+res[0][2]*4%mod)%mod;
    }
};

求余运算规则:
设正整数x,y,p,求余符号为⊙。
对于加法运算:(x + y)⊙p = (x⊙p + y⊙p)⊙p
对于乘法运算:(x*y)⊙p = [(x⊙p) * (y⊙p)]⊙p

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值