题目描述
乾隆白菜是北京的特色美食,它的做法是用麻酱为基调的酸甜料汁,凉拌生白菜心,做法简单,清脆爽口,确实是一道凉菜。
于是,小明决定自己做一份“精品”的乾隆白菜。
首先,他准备了 n n n颗重量都是整数的精品白菜叶作为食材。
接下来,他需要将这些白菜叶撕成至少 m m m片来完成这道菜,有强迫症的小明为了让这道菜更加精品,他要求每片菜叶的重量相同,且必须也是整数。
强迫症是可怕的,为了不让这道菜毁为白菜碎,小明还要保证每片白菜叶的重量尽可能大。
那么请问,成菜中每片白菜的最大重量会是多少?
输入
第一行两个整数 n n n和 m m m,分别表示食材的颗数和至少需要的片数。 第二行 n n n个正整数, a i a_i ai表示食材中每颗白菜叶的重量。
输出
精品乾隆白菜中每片菜叶的重量。
样例1输入
3 2
3 7 9
样例1输出
7
样例2输入
5 5
4 7 2 10 5
样例2输出
4
数据规模
对 40% 的数据 1 ≤ n , m ≤ 1000 , 1 ≤ a i ≤ 1000 1\leq{n,m}\leq{1000}, 1\leq{a_i}\leq{1000} 1≤n,m≤1000,1≤ai≤1000
对 70% 的数据 1 ≤ n , m ≤ 1 0 5 , 1 ≤ a i ≤ 1000 1\leq{n,m}\leq{10^5}, 1\leq{a_i}\leq{1000} 1≤n,m≤105,1≤ai≤1000
对 100% 的数据 1 ≤ n , m ≤ 1 0 5 , 1 ≤ a i ≤ 1 0 9 1\leq{n,m}\leq{10^5}, 1\leq{a_i}\leq{10^9} 1≤n,m≤105,1≤ai≤109
样例解释
样例一中,小明直接取第二颗白菜,然后将第三颗撕出一片重量为7,即能得到2片,并且这样最重
样例二中,第一颗撕1片,第二颗1片,第三颗0片,第四颗2片,第五颗1片,这样是撕成5片的最佳答案
解题思路及代码
二分不一定要在有序序列上进行,也可以是单调函数。
题目问的是每片白菜的最大重量是多少,我们可以将这个优化问题,转变成判定问题,最小的重量为 1 1 1,最大重量为 W e i g h t m a x Weight_{max} Weightmax。
枚举答案 [ 1 , W e i g h t m a x ] [1,Weight_{max}] [1,Weightmax],判断是否满足至少需要的片数 m m m。随着重量的增加,相对应的片数就会减少,那么这个序列是成单调性的,所以可以使用二分去做。也就是不断枚举答案,判断是否可行。
AC代码如下:
#include <bits/stdc++.h>
using namespace std;
vector<int> ans;
//判断当重量取weight得时候,得到得片数
int check(int weight){
int count = 0;
for(int i=0; i<ans.size(); i++){
count += ans[i]/weight;
}
return count;
}
int main(){
int n,m;
cin>>n>>m;
int maxValue = -1;
int value;
for(int i=0; i<n; i++){
cin>>value;
ans.push_back(value);
if(value > maxValue) maxValue = value;
}
//递减序列 重量越大,片数越少
//举个例子,6 5 4 4 4 2 1 假设我们要找的m=4,可以根据这个序列来确定下面的边界
int mid, left, right;
left = 1;
right = maxValue + 1;
//[left,right)
while(left < right){
mid = left + (right-left)/2;
if(check(mid) == m){
//对应上面的举例:说明找到一个4,但我们要找重量最大的,那么我们就得往右收敛
left = mid + 1;
}else if(check(mid) > m){
//对应上面的举例:说明找的>4了,我们还是得往右收敛
left = mid + 1;
}else{
//对应上面的举例:说明找的<4,片数无法满足,往左收敛
right = mid;
}
}
cout<<left-1<<endl;
return 0;
}