作者介绍
郑立伟,西门子工业软件能源及工程机械行业PLM技术经理及云解决方案顾问。曾在央企负责PLM项目,主要经验涵盖组织管理、标准化、开发管理、运维管理、安全保密管理、项目管理及数字化企业建设管理和咨询工作等。
实现数据驱动与数据价值增值是数字化企业转型成功的一个重要标志。
一般地,业务数据通过数据对象的属性、业务逻辑关系、应用关系等数据状态和文档、图纸或模型等表现形式进行描述。数据驱动则关注业务数据对象的属性参数和关系,而不关注其表现形式。数据驱动是相对于电子流程驱动(或表单驱动)而言的。
电子流程驱动下,数据的集成、流转和应用等协同通过电子流程结合表单、图纸、文档或模型等数据表现形式来实现。电子流程驱动模式下,经常会出现种类繁多,数量庞大的电子流程以及表单,导致业务人员需要耗费大量的时间去处理它们,IT人员也需要花费大量时间去开发和维护。流程和表单也会对数据造成人为割裂,导致信息孤岛,从而给产品数据的生命周期变更带来麻烦。
数据驱动的特点与优势
数据驱动下,数据通过电子流程发布之后,数据协同是基于数据状态来实现的,数据状态是可以描述业务各个阶段的业务流程状态。数据状态一般包括技术状态和管理状态。技术状态是指数据在不同业务阶段下,通过不同的属性、参数、逻辑关系或应用关系来描述其生命周期状态。比如某一个零件在设计阶段是通过设计属性以及零部件的逻辑关系等来描述,在采购阶段是通过采购特有的属性来扩展描述,在工艺制造阶段是通过工艺属性来扩展描述,随着零件属性和关系的扩展,可以清楚的了解零件所处的业务状态,这个过程只有数据,没有电子流程。管理状态是指数据在各个业务阶段下,描述数据的可用性等,比如数据的变更、发布、有效性、使用情况、所有者、创建者等附加的管理要素。与电子流程驱动一样,数据驱动下的数据状态也可以被审计跟踪。
数据驱动下,由于数据的状态可以描述出业务流程的状态并驱动业务流程执行(一般来说,数据驱动需要明确定义规范的业务流程及相关数据规则规范要求,数据的“说话”才能正确地描述业务状态),所以不需要再次通过流程或表单等额外方式来告知数据如何流转或应用等协同,当然也不会造成“中断”状态(任何数据状态的更新都不需要通过流程来实现“被动”协同,而是业务人员可以通过丰富的手段来“主动”获取最新的数据状态;所有的数据也不一定通过表单整合来传递,减少了表单造成的数据割裂情况)。在流程行业,一般基于PBS实现数据从需求到运维的转换实现业务驱动;在离散行业,一般基于产品BOM实现数据从需求到维护的转换实现业务驱动。这中间所有的PBS或者BOM的变化都是基于同一套数据模型和关系模型来实现的,从而实现各个业务阶段PBS或BOM的联动。
流程行业基于位号的数据驱动模式
离散行业基于BOM的数据驱动
实现数据驱动模式的核心要求
实现数据驱动模式有哪些核心要求?主要是要建立数据驱动的思维。
1. 平台思维。搭建一个基于数据对象并且开放的成熟数据管理与协同平台,比如西门子的Teamcenter平台。平台需要支持以PBS(流程行业)或BOM(离散行业)为中心的数据管理模型,落地数据驱动的全生命周期规范的业务流程和相关数据规则规范要求,实现基于数据状态的业务流程。
2. 标准化思维。特别是在数据集成及应用展现等方面的需求,不是来一个实现一个,而是尽可能通过标准化组件建设的思维,实现数据集成标准化、分析标准化以及展现标准化,这些标准化组件需要尽可能解耦,最后由数据使用人员或开发人员通过标准化组件快速组合实现复杂的业务需求,提高效率,同时为创新提供技术支持。
3. 数据本质思维。数据的本质是人,需要人去分析数据可以产生的价值,所以需要业务人员更多从数据应用角度去提出各种信息化或数字化需求并参与扩展应用开发,发现数据的潜在价值。传统的信息化或数字化需求基本都是基于功能,功能思维会限制对数据价值的深度挖掘。一个成熟的商业平台,已经具备了各种成熟的功能。
4. 数据关系思维。数据间要尽可能建立各种关系。比如知识图谱在工业领域的应用就需要通过不断建立各种数据间的关系,并基于关系建立数据分析模型,最后实现可靠的数据预测能力。关系不一定只有因果关系成立时才建立。
5. 用户体验思维。好的用户体验,需要有一种便捷的方式让最终用户参与基于数据应用的开发过程。
6. 微创新思维。利用数据实现有助于业务发展和竞争力提升的微创新或许是实现数据价值增值最快捷的路径。每个业务人员都可以进行各自领域的微创新,微创新或许能实现四两拨千斤的效果,或积累起来实现大创新。
除了建立思维外,在技术层面,围绕数据,各个业务阶段的不同层次的业务人员需要在数据规则规范与安全保障下,快速、准确、多方式地“主动”获取、分析、挖掘与展现数据的价值,最终实现创新,实现由“千人一面”到“千人千面”的转变。
Mendix基于模型驱动的低代码开发平台作为西门子工业软件套件中一个重要部分,是数据驱动的加速器,可以实现数据驱动过程中数据集成、传递及应用等协同需求,并缓解IT专业开发人员供给短缺的现状,使得最能挖掘数据价值的业务人员可以更好地参与数据分析应用以及微创新应用开发,也使得专业IT开发人员从传统开发模式上升至业务层,更多地参与标准化以及新信息技术的融合开发。
更多信息,请访问以下链接:
Mendix官网:https://www.mendix.com/zh/
Mendix中国论坛:https://forum.mendix.tencent-cloud.com/
Mendix行业解决方案:https://solutions.mendix.com/
Mendix平台指南:https://www.mendix.com/evaluation-guide/
Mendix动画展示:https://www.mendix.com/demos/
感谢阅读!