斐波那契数说明
斐波那契数由斐波那契数列生成,斐波那契数列是这样的一组数列:1,1,2,3,5,8,13,21,…
即该数列从第三项开始,每一项等于其前两项之和。
要求
现要求设计程序,实现功能:输入n则输出第n个斐波那契数。
具体实现
方法一:非递归方式实现
分析
从第三项开始,每一项等于前两项之和。第一、第二项比较特殊都是1,于是我们将第一、第二项区别开来。
其后只需要记住第n-1,n-2项的值即可。
代码实现
#include<stdio.h>
int main()
{
int n = 0;
int a = 1, b = 1, c = 1;//初始化三个变量,a,b始终表示位于c前面的两项
scanf("%d", &n);//用户输入想要输出的第几个斐波那契数
if (n <= 2)
{
printf("1",n);
}//因为第一、二项比较特殊,我们用if分支语句将其做单独处理
//目的是当要求输出第一、第二个斐波那契数时,直接输出结果1
else
{
//否则进行下面的操作
while (n > 2)//循环判断条件,只有n>2时才执行操作
{
c = a + b;//a,b作为c前面的两项,将他们的和赋给c
a = b;
b = c; //再将b值给a,c值给b,c任然紧跟a,b后面。这么做相当于给a,b,c整体往后移。
n--;
}
}
printf("%d",c);
return 0;
}
方法二:递归方式实现
分析
n<=2时,Feb(1) = 1,Feb(2) = 1
n> 2 时,Feb(n) = Feb(n-1) + Feb(n-2)
举例:
代码实现
#include<stdio.h>
int Feb(int n)
{
int c = 1;
if (n <= 2)
{
return c;//n<=2时直接输出1
}
else
{
c = Feb(n - 1) + Feb(n - 2);//n>3时,递归调用Feb函数,意思简单明了。调用求出前两项的值。
}
return c;
}
int main()
{
int n = 0;
scanf("%d", &n);
int r = Feb(n);
printf("%d", r);
return 0;
}