题目描述
给定一个长度为N的数列,求数值严格单调递增的子序列的长度最长是多少。
输入格式
第一行包含整数N。
第二行包含N个整数,表示完整序列。
输出格式
输出一个整数,表示最大长度。
数据范围
1 ≤ N ≤ 1000,
−
1
0
9
10^9
109 ≤ 数列中的数 ≤
1
0
9
10^9
109
输入样例:
7
3 1 2 1 8 5 6
输出样例:
4
算法1
(动态规划) O(
n
2
n^2
n2)
状态表示:dp[i]表示从第一个数字开始算,以a[i]结尾的最大的上升序列。(以a[i]结尾的所有上升序列中属性为最大值的那一个)
状态计算(集合划分):j∈(0,1,2, … , i - 1) , 在a[i] > a[j]时,
dp[i] = max(dp[i] , dp[i] + 1)。
有一个边界,若前面没有比i小的,dp[i]为1(自己为结尾)。
最后在找dp[i]的最大值。
时间复杂度
O(
n
2
n^2
n2) 状态数(n) * 转移数(n)
C++ 代码
#include <iostream>
using namespace std;
const int N = 1010;
int a[N], dp[N];
int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
int ans = 1; // 找出所计算的dp[i]之中的最大值,边算边找
for (int i = 0; i < n; i++) {
dp[i] = 1; // 设dp[i]默认为1,找不到前面数字小于自己的时候就为1
for (int j = 0; j < i; j++) {
if (a[i] > a[j]) dp[i] = max(dp[i], dp[j] + 1); // 前一个小于自己的数结尾的最大上升子序列加上自己,即+1
}
ans = max(ans, dp[i]);
}
cout << ans << endl;
return 0;
}
算法2
(动态规划 + 二分) O(
n
l
o
g
n
nlog_n
nlogn)
状态表示:f[i]表示长度为 i 的最长上升子序列,末尾最小的数字。(长度为i的最长上升子序列所有结尾中,结尾最小min的) 即长度为i的子序列末尾最小元素是什么。
状态计算:维护一个数组,使其为递增序列,以 ans-1 为下标的数为该数组的最大数,每次新输入的数都放到该数组中比该数大的第一个数的位置,如果数组中没有比该数大的数则放在最后面。
f[i]一定以一个单调递增的数组,所以可以用二分法来找第一个大于或等于 x 的数字。
时间复杂度
O(
n
l
o
g
n
nlog_n
nlogn) 状态数(n) * 转移数(
l
o
g
n
logn
logn)
C++ 代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int f[N];
int main() {
int n;
cin >> n;
int ans = 0;
for(int i = 0; i < n; i++){
int x;
cin >> x;
if(!ans) f[ans++] = x;
else if(x < f[ans-1]){
int cnt = lower_bound(f,f+ans,x) - f;
f[cnt] = x;
}
else if(x > f[ans-1]) f[ans++] = x;
}
cout << ans << endl;
}