最长上升子序列问题的两个解题方法

题目描述

给定一个长度为N的数列,求数值严格单调递增的子序列的长度最长是多少。

输入格式
第一行包含整数N。

第二行包含N个整数,表示完整序列。

输出格式
输出一个整数,表示最大长度。

数据范围
1 ≤ N ≤ 1000,
1 0 9 10^9 109 ≤ 数列中的数 ≤ 1 0 9 10^9 109

输入样例:

7
3 1 2 1 8 5 6

输出样例:

4

算法1

(动态规划) O( n 2 n^2 n2)
状态表示:dp[i]表示从第一个数字开始算,以a[i]结尾的最大的上升序列。(以a[i]结尾的所有上升序列中属性为最大值的那一个)

状态计算(集合划分):j∈(0,1,2, … , i - 1) , 在a[i] > a[j]时,
dp[i] = max(dp[i] , dp[i] + 1)。
有一个边界,若前面没有比i小的,dp[i]为1(自己为结尾)。

最后在找dp[i]的最大值。

时间复杂度
O( n 2 n^2 n2) 状态数(n) * 转移数(n)

C++ 代码
#include <iostream>

using namespace std;

const int N = 1010;

int a[N], dp[N];

int main() {
	int n;
    cin >> n;
    for (int i = 0; i < n; i++) cin >> a[i];

    int ans = 1;    // 找出所计算的dp[i]之中的最大值,边算边找
    for (int i = 0; i < n; i++) {
        dp[i] = 1;    // 设dp[i]默认为1,找不到前面数字小于自己的时候就为1
        for (int j = 0; j < i; j++) {
            if (a[i] > a[j]) dp[i] = max(dp[i], dp[j] + 1);    // 前一个小于自己的数结尾的最大上升子序列加上自己,即+1
        }
        ans = max(ans, dp[i]);
    }

    cout << ans << endl;
    return 0;
}
算法2

(动态规划 + 二分) O( n l o g n nlog_n nlogn)
状态表示:f[i]表示长度为 i 的最长上升子序列,末尾最小的数字。(长度为i的最长上升子序列所有结尾中,结尾最小min的) 即长度为i的子序列末尾最小元素是什么。

状态计算:维护一个数组,使其为递增序列,以 ans-1 为下标的数为该数组的最大数,每次新输入的数都放到该数组中比该数大的第一个数的位置,如果数组中没有比该数大的数则放在最后面。

f[i]一定以一个单调递增的数组,所以可以用二分法来找第一个大于或等于 x 的数字。

时间复杂度
O( n l o g n nlog_n nlogn) 状态数(n) * 转移数( l o g n logn logn)

C++ 代码
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;
int f[N];

int main() {
    int n;
    cin >> n;
    int ans = 0;
    for(int i = 0; i < n; i++){
        int x;
        cin >> x;
        if(!ans) f[ans++] = x;
        else if(x < f[ans-1]){
            int cnt = lower_bound(f,f+ans,x) - f;
            f[cnt] = x;
        }
        else if(x > f[ans-1]) f[ans++] = x;
    }
    cout << ans << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值