- 博客(7)
- 收藏
- 关注
原创 数据结构英文习题解析-第七章 并查集 Union & Find
前言:最近快到FDS考试了,po重刷了一下学校的题目,自己整理了一些解析orz 因为po在自己找解析和学习的过程中非常痛苦,所以在此共享一下我的题目和自己写的解题思路,欢迎各位指出错误~全章节预计会陆续更新,可在专栏查看~(Reflexive自反性) a R a, for all a ∈ S.注意并查集的表示方法;把小的集合合并在大的集合上。F 深度最大为(log2N)+1。
2024-01-14 12:11:42 1663 1
原创 数据结构英文习题解析-第六章 堆和二叉树Heap, Priority Queues, Binary Tree
前言:最近快到FDS考试了,po重刷了一下学校的题目,自己整理了一些解析orz 因为po在自己找解析和学习的过程中非常痛苦,所以在此共享一下我的题目和自己写的解题思路,欢迎各位指出错误~全章节预计会陆续更新,可在专栏查看~False 最小堆本身并不是像二叉搜索树那样有序的,所以中序遍历最小堆也不能保证得到有序序列。将序列写做堆的样子,然后从第一个父节点开始执行往下换的操作,不是一个一个插入。因为D是一个叶结点,ABC都不是叶结点,不可能是最小的。完全二叉树不意味着满二叉树。注意one by one。
2024-01-13 21:53:28 999 1
原创 数据结构英文习题解析-第五章 二叉搜索树Binary Search Tree
A 这道题目我看了好久,可以通过根节点左右子树大小判断mid取大还是取小,比如A选项这张图左子树5个节点右子树4个节点,那mid是(left+right)/2+1(取大);前言:最近快到FDS考试了,po重刷了一下学校的题目,自己整理了一些解析orz 因为po在自己找解析和学习的过程中非常痛苦,所以在此共享一下我的题目和自己写的解题思路,欢迎各位指出错误~全章节预计会陆续更新,可在专栏查看~4和6可能不是同一个parent的两个child,可能4是rchild,6是lchild。1<3<5<4<2;
2024-01-13 17:03:41 2919 2
原创 数据结构英文习题解析-第四章 二叉树Binary Tree
首先根据这棵树左4右3,可以判断root为F,EADB在左子树,FHCG在右子树。后续几层也可以根据左右子树元素个数进行推断,得树:F;前言:最近快到FDS考试了,po重刷了一下学校的题目,自己整理了一些解析orz 因为po在自己找解析和学习的过程中非常痛苦,所以在此共享一下我的题目和自己写的解题思路,欢迎各位指出错误~全章节预计会陆续更新,可在专栏查看~普通树变成二叉树的方法是:保留长子,把后续的兄弟结点都变成长子的孩子;T 用一维整数数组,顺序表示是可以的;度为3的树,画图即可。
2024-01-12 21:06:36 1473
原创 数据结构英文习题解析-第三章 栈和队列Stack & Queue
前言:最近快到FDS考试了,po重刷了一下学校的题目,自己整理了一些解析orz 因为po在自己找解析和学习的过程中非常痛苦,所以在此共享一下我的题目和自己写的解题思路,欢迎各位指出错误~全章节预计会陆续更新,可在专栏查看~循环链表,一共6个size,2次入队2次出队,front+2 = 0+2 = 2,rear+2 = 4+2 = 6, 6 % 6 = 0。第一轮 3+2 = 5,第二轮 8-5 = 3;第三轮 5*3 = 15。5种:123,132,231,213,321。
2024-01-11 22:02:16 767
原创 数据结构英文习题解析-第二章 链表List
B 要把两个有序单链表合并为一个链表,最少的比较情况可以假设一个链表中的元素是1,2,3,4,5;此时只要把6一直和1~5比5次就行,等前一个链表空了,再把后一个链表中的值直接链到新链表。前言:最近快到FDS考试了,po重刷了一下学校的题目,自己整理了一些解析orz 因为po在自己找解析和学习的过程中非常痛苦,所以在此共享一下我的题目和自己写的解题思路,欢迎各位指出错误~全章节预计会陆续更新,可在专栏查看~(错误,链表的结点每个都会存下一个结点地址,所以链表不需要连续存放)
2024-01-10 23:23:06 1194 3
原创 数据结构英文习题解析-第一章 算法复杂度分析Algorithm Analysis
所以斐波那契数列会先从F(N)->F(N-1)->F(N-2)层层递归做到F(1),然后返回N层(N是深度)。所以i的范围为1~N,else部分T(N)=O(N^3)。前言:最近快到FDS考试了,po重刷了一下学校的题目,自己整理了一些解析orz 因为po在自己找解析和学习的过程中非常痛苦,所以在此共享一下我的题目和自己写的解题思路,欢迎各位指出错误~T 计算sum(1+2+...+N) = (1 + N) * N / 2,去掉常数部分之后可发现 O(1+2+..+N)也为O(N^2)
2024-01-10 20:43:40 3047 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人