题目链接: 完全平方数
有关题目
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。
你需要让组成和的完全平方数的个数最少。
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;
换句话说,其值等于一个整数自乘的积。
例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
提示:
1 <= n <= 10^4
题解
法一:动态规划
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1);//dp[i]表示最少需要多少个数的平方来表示整数i
for (int i = 1; i <= n; i++)
{
int minn = INT_MAX;
for (int j = 1; j * j <= i; j++)
{
minn = min(minn,dp[i - j * j]);//动态转移方程
}
dp[i] = minn + 1;
}
return dp[n];
}
};
法二:数学
参考官方题解
思路:
数学中有一个四平方和定理,即任意一个正整数最多能够被写成四个正整数的平方和
class Solution {
public:
// 判断是否为完全平方数
bool isPerfectSquare(int n)
{
int x = (int)sqrt(n);
return x * x == n;
}
// 判断是否能表示为 4^k*(8m+7)
bool checkAnswer4(int n)
{
while(n % 4 == 0)
{
n /= 4;
}
return n % 8 == 7;
}
int numSquares(int n) {
if(isPerfectSquare(n))
return 1;
if(checkAnswer4(n))
return 4;
for (int i = 1; i * i <= n; i++)
{
int j = n - i * i;
if (isPerfectSquare(j))
return 2;
}
return 3;
}
};