《LeetCode之每日一题》:57.完全平方数

该博客介绍了如何解决寻找构成正整数n的最少完全平方数之和的问题。提供了两种解法:动态规划和数学方法。动态规划法通过建立状态转移方程找出最少数量;数学法则利用四平方和定理判断特殊情况。示例展示了具体实现过程。
摘要由CSDN通过智能技术生成

完全平方数


题目链接: 完全平方数

有关题目

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。
你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;
换句话说,其值等于一个整数自乘的积。
例如,14916 都是完全平方数,而 311 不是。
示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4
示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9
提示:

1 <= n <= 10^4

题解

法一:动态规划
在这里插入图片描述

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1);//dp[i]表示最少需要多少个数的平方来表示整数i
        for (int i = 1; i <= n; i++)
        {
            int minn = INT_MAX;
            for (int j = 1; j * j <= i; j++)
            {
                minn = min(minn,dp[i - j * j]);//动态转移方程
            }
            dp[i] = minn + 1;
        }
        return dp[n];
    }
};

在这里插入图片描述
法二:数学
参考官方题解

思路:
数学中有一个四平方和定理,即任意一个正整数最多能够被写成四个正整数的平方和

在这里插入图片描述

class Solution {
public:
    // 判断是否为完全平方数
    bool isPerfectSquare(int n)
    {
        int x = (int)sqrt(n);
        return x * x == n;
    }

    // 判断是否能表示为 4^k*(8m+7)
    bool checkAnswer4(int n)
    {
        while(n % 4 == 0)
        {
            n /= 4;
        }
        return n % 8 == 7;
    }
    int numSquares(int n) {
        if(isPerfectSquare(n))
            return 1;
        if(checkAnswer4(n))
            return 4;
        for (int i = 1; i * i <= n; i++)
        {
            int j = n - i * i;
            if (isPerfectSquare(j))
                return 2;
        }
        return 3;
    }
};

在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值