题目链接: 第 K 个最小的素数分数
有关题目
给你一个按递增顺序排序的数组 arr 和一个整数 k 。
数组 arr 由 1 和若干 素数 组成,且其中所有整数互不相同。
对于每对满足 0 < i < j < arr.length 的 i 和 j ,可以得到分数 arr[i] / arr[j] 。
那么第 k 个最小的分数是多少呢?
以长度为 2 的整数数组返回你的答案, 这里 answer[0] == arr[i] 且 answer[1] == arr[j] 。
示例 1:
输入:arr = [1,2,3,5], k = 3
输出:[2,5]
解释:已构造好的分数,排序后如下所示:
1/5, 1/3, 2/5, 1/2, 3/5, 2/3
很明显第三个最小的分数是 2/5
示例 2:
输入:arr = [1,7], k = 1
输出:[1,7]
提示:
2 <= arr.length <= 1000
1 <= arr[i] <= 3 * 10^4
arr[0] == 1
arr[i] 是一个 素数 ,i > 0
arr 中的所有数字 互不相同 ,且按 严格递增 排序
1 <= k <= arr.length * (arr.length - 1) / 2
题解
法一:自定义排序
参考官方题解
class Solution {
public:
vector<int> kthSmallestPrimeFraction(vector<int>& arr, int k) {
int n = arr.size();
vector<pair<int, int>> fraction;
//arr共能产生n * (n - 1) / 2个分数
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
fraction.emplace_back(arr[i], arr[j]);
}
}
//a / b < c / d 等价于 a * c < b * d
//有效的避免了浮点数的精度所产生误差问题
sort(fraction.begin(), fraction.end(), [&](const auto &x, const auto &y){
return x.first * y.second < x.second * y.first;//分数进行自定义排序的升序排列
});
return {fraction[k - 1].first, fraction[k - 1].second};
}
};