一个简单的生产计划优化​​ 的整数规划案例

以下是一个基于 生产计划优化 的整数规划案例,使用 Python 的 PuLP 库求解。该案例结合了资源约束和利润最大化目标,同时包含完整的代码实现和结果分析。


案例背景

某工厂生产两种产品 AB,需满足以下条件:
资源消耗
• 每生产 1 个 A 需要 3 小时加工时间1 小时装配时间
• 每生产 1 个 B 需要 1 小时加工时间2 小时装配时间
资源限制
• 每日总加工时间 ≤ 100 小时。
• 每日总装配时间 ≤ 80 小时。
利润
• 每个 A 利润为 300 元,每个 B 利润为 200 元

目标:制定生产计划,使每日总利润最大化,且生产数量为整数。


1. 问题定义

某工厂生产两种产品 AB,目标为在资源约束下最大化利润。
参数定义
x 1 x_1 x1:产品 A 的生产数量(整数)
x 2 x_2 x2:产品 B 的生产数量(整数)
资源消耗
• 加工时间:A 消耗 3 小时/单位,B 消耗 1 小时/单位
• 装配时间:A 消耗 1 小时/单位,B 消耗 2 小时/单位
资源限制
• 加工时间总上限:100 小时
• 装配时间总上限:80 小时
利润
• A 的利润为 300 元/单位,B 的利润为 200 元/单位


2. 模型公式

目标函数(最大化总利润)

Maximize Z = 300 x 1 + 200 x 2 \text{Maximize} \quad Z = 300x_1 + 200x_2 MaximizeZ=300x1+200x2
解释:总利润由两种产品的生产量及其单位利润乘积之和构成。

约束条件
  1. 加工时间约束
    3 x 1 + x 2 ≤ 100 3x_1 + x_2 \leq 100 3x1+x2100
  2. 装配时间约束
    x 1 + 2 x 2 ≤ 80 x_1 + 2x_2 \leq 80 x1+2x280
  3. 非负性与整数约束
    x 1 , x 2 ≥ 0 且为整数 x_1, x_2 \geq 0 \quad \text{且为整数} x1,x20且为整数

Python 实现

1. 安装依赖库
pip install pulp
2. 建模与求解代码
from pulp import LpProblem, LpVariable, LpMaximize, LpInteger, value

# 创建线性规划问题
model = LpProblem(name="Production_Optimization", sense=LpMaximize)

# 定义决策变量(整数类型)
units_a = LpVariable(name="Product_A", lowBound=0, cat=LpInteger)
units_b = LpVariable(name="Product_B", lowBound=0, cat=LpInteger)

# 目标函数:最大化总利润
model += 300 * units_a + 200 * units_b, "Total_Profit"

# 添加约束条件
model += 3 * units_a + units_b <= 100, "Processing_Time_Constraint"
model += units_a + 2 * units_b <= 80, "Assembly_Time_Constraint"

# 求解问题
model.solve()

# 输出结果
print(f"状态: {model.status}")
print(f"生产产品 A 数量: {int(value(units_a))}")
print(f"生产产品 B 数量: {int(value(units_b))}")
print(f"最大总利润: {value(model.objective)} 元")
3. 结果示例
状态: Optimal
生产产品 A 数量: 24
生产产品 B 数量: 28
最大总利润:12800 元

关键分析

  1. 模型建立
    • 目标函数为利润最大化,约束条件为资源限制。
    • 使用 LpInteger 确保生产数量为整数。

  2. 求解工具选择
    PuLP 库适合处理整数规划问题,且语法直观。

  3. 实际意义
    • 该模型可扩展至多产品、多资源场景,例如调整资源限制或增加产品类型。


可视化(可选)

使用 matplotlib 绘制生产比例饼图:

import matplotlib.pyplot as plt

labels = ['Product A', 'Product B']
sizes = [value(units_a), value(units_b)]

plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
plt.title("生产比例分布")
plt.show()

延伸场景

动态调整:根据资源供应波动(如机器故障)实时优化生产计划。
成本优化:引入原材料成本约束,进一步细化模型。
多目标优化:平衡利润与碳排放等可持续发展指标。


通过此案例,可以看到整数规划在资源分配中的强大能力。更多复杂问题(如供应链网络优化)可参考 scipy.optimizePyomo 库实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值