数据集DATA.CSV
Country,Age,Salary,Purchased France,44,72000,No Spain,27,48000,Yes Germany,30,54000,No Spain,38,61000,No Germany,40,,Yes France,35,58000,Yes Spain,,52000,No France,48,79000,Yes Germany,50,83000,No France,37,67000,Yes
#Step 1: Importing the libraries
import numpy as np
import pandas as pd
#Step 2: Importing dataset
dataset=pd.read_csv('Data.csv')
X=dataset.iloc[:,:-1].values
Y=dataset.iloc[:,3].values
#Step 3: Handling the missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])
#Step 4: Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])
#Creating a dummy variable
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder()
Y = labelencoder_Y.fit_transform(Y)
#Step 5: Splitting the datasets into training sets and Test sets
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)
#Step 6: Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.fit_transform(X_test)