从文本构建金庸家族知识图谱

针对对金庸家族的文本描述构建家族知识图谱。

"金庸的姐夫是钱学森,钱学森的妻子是蒋英,金庸的表哥是徐志摩,金庸的堂姐是琼瑶,金庸有一个哥哥,名叫查良钊。金庸有个儿子是查传侠"

本体模型:人与人的亲戚关系(

"表哥": "brother_low",
"姐夫": "sister_husband",
"妻子": "wife",
"堂姐":"cousin",
"父亲": "father",
"母亲": "mother",
"哥哥": "brother",
"姐姐": "sister",
"弟弟": "brother",
"妹妹": "sister",
"儿子": "son",
"女儿": "daughter")

步骤1: 安装必要的库

确保你已经安装了所需的库:

pip install torch transformers py2neo

步骤2: 加载预训练模型

加载 Hugging Face 的 BERT 模型进行命名实体识别:

from transformers import BertTokenizer, BertForTokenClassification
import torch
from py2neo import Graph, Node, Relationship

# 加载tokenizer和model
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForTokenClassification.from_pretrained('ckiplab/bert-base-chinese-ner')

步骤3: 文本预处理

准备一段关于金庸家族的文本,并对其进行预处理:

# 文本预处理
text = "金庸的姐夫是钱学森,钱学森的妻子是蒋英,金庸的表哥是徐志摩,金庸的堂姐是琼瑶,金庸有一个哥哥,名叫查良钊。金庸有个儿子是查传侠"
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True)

步骤4: 实体识别

使用模型预测文本中的实体:

# 实体识别
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2).squeeze()

# 解码预测结果
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
entities = []
current_entity = []
current_label = None

# 遍历每个token和它的预测标签
for token, prediction in zip(tokens, predictions):
    label = model.config.id2label[prediction.item()]

    if label.startswith("B-"):  # 实体开始
        if current_entity:  # 如果有正在处理的实体,先存起来
            entities.append((current_entity, current_label))
        current_entity = [token]  # 新建一个实体
        current_label = label[2:]  # 去掉B-,记录实体类别
    elif label.startswith("I-") or label.startswith("E-"):  # 实体内部或结束
        current_entity.append(token)  # 将token添加到当前实体
        if label.startswith("E-"):  # 如果是实体结束,存储实体
            entities.a
知识图谱是一种用于描述实体之间关系的图形化知识表示方式。Python是一种功能强大的编程语言,可以用于构建知识图谱。以下是使用Python构建知识图谱的一些步骤和方法: 1. 确定实体和关系:首先需要确定知识图谱中包含哪些实体和它们之间的关系。例如,在金庸小说中,实体可以是人物、地点、事件等,它们之间的关系可以是亲戚关系、师徒关系、敌对关系等。 2. 数据收集和处理:收集和处理数据是构建知识图谱的重要步骤。可以使用Python爬虫技术从互联网上收集数据,也可以使用Python处理已有的数据。例如,可以使用Python的pandas库对数据进行清洗和处理。 3. 知识图谱建模:使用Python的图数据库neo4j可以方便地构建知识图谱。可以使用Python的py2neo库连接neo4j数据库,并使用Cypher语言创建节点和关系。例如,可以使用以下代码创建一个人物节点和一个师徒关系: ```python from py2neo import Graph, Node, Relationship # 连接neo4j数据库 graph = Graph() # 创建人物节点 person = Node("Person", name="张无忌") graph.create(person) # 创建师徒关系 master = Node("Person", name="张三丰") apprentice = person relationship = Relationship(master, "师徒", apprentice) graph.create(relationship) ``` 4. 可视化:使用Python的可视化库可以将知识图谱可视化。例如,可以使用Python的matplotlib库绘制知识图谱的节点和关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值