基于词汇树的图像检索(一):词汇树

本文介绍了基于词汇树的图像检索方法,涉及视觉单词、SIFT特征、层次K-means聚类等关键概念。通过对图像提取SIFT特征并使用K-means聚类生成视觉单词,进而构建词汇树,实现大规模图像集的快速检索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从今天起准备把我的毕设的实现细节写到博客里面,一方面写一遍加深记忆,另一方面如果哪天忘记了查起来也方便


毕设题目是基于词汇树的无序图像集检索和支撑结构生成,其实提出词汇树那篇文章(Scalable Recognition with a Vocabulary Tree[1])已经是2006年的了,算是很老的文章,但是在大规模二三维重建的过程中快速的图像检索还是有意义的。


今天算是把整个程序怎么写彻底想通了,果然不能没有彻底相同就开始写代码。用力过猛容易闪着腰【高三暑假TAT

这个程序大概是这么个流程:(记录一下,无论是实验室寝室还是公司都可以查,不用老是带着那张草稿纸了)

1. 所有图像提特征(已经实现)

2. 建树(输入:所有特征,特征个数) (已经实现)

3. 将训练集图像转换成TF-IDF向量  (最麻烦的部分,正在写)

    (1) 计算树中每个节点的IDF值 (输入:所有特征,一个记录每张图有多少特征的一位数组)

    (2) 计算每张图的TF-IDF向量 (输入:指向起始特征的指针,特征数目)

    (3) 将TF-IDF向量和对应的图像路径写入数据结构 (输入:TF-IDF向量和图像路径)

4. 查询 

    (1) 计算查询图像的TF-IDF向量 (输入:查询图像路径)

    (2) 找到距离最近的数据库图像 (已经实现)


今天先说下什么叫做词汇树。


首先介绍一个概念叫做视觉单词,视觉单词的提出是基于bag of words模型的。首先对于数据集的图像提取sift特征。sift特征在图像描述方面是应用最为广泛的一种特征,由David Lowe在1999年提出,于2004年完善。sift特征得到的结果是,对于图像上的每一个兴趣点都得到一个128维的描述向量(图上有多少兴趣点,兴趣点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值