7-3 数学思想——枚举 (8分)

这篇博客介绍了如何利用数学思想中的枚举方法,解决一个与货币面值有关的组合问题。具体情境是:给定四种不同面值的货币(10元、5元、2元、1元),求解给定金额的组合方式数量。博客提供了输入输出格式,并给出一个具体的示例:当金额为10元时,共有11种不同的组合方法。
摘要由CSDN通过智能技术生成

Author:MiFkuF
微电子科学与工程 理科男

有四种面值不一样的货币分别是10元,5元,2元,1元。现在给你一个钱数你能求求它的组成方法都有多少吗?

输入格式

一个数n(0<n<=2^32)

输出格式

有四种面值不一样的货币分别是10元,5元,2元,1元。现在给你一个钱数你能求求它的组成方法都有多少吗?

输入样例:

10

输出样例:

11
代码

#include<stdio.h>
struct yuan
{
   
 int ten ;
 int five ;
 int two ;
 int one ;
}ren[1];//我只是在练习结构体而已,有所需要可以自己删除结构体
int main()
{
   
 int 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值