欧拉定理 & RSA算法数学原理

欧拉定理

如果两个正整数m和n互质,那么m的φ(n)次方减去1,可以被n整除。
在这里插入图片描述

补充:公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形

定理一:

算术函数f如果满足对于任意两个互质的正整数m和n,均有f(mn)=f(m)f(n),就称f为积性函数(或乘性函数)。 如果对于任意两个正整数m和n,均有f(mn)=f(m)f(n),就称为完全积性函数。

定理二:

对于素数n,φ(n)=n−1,因为质数与小于它的每一个正整数都互质

定理三:

在这里插入图片描述

定理四:

如果n=pq,而且p,q互质,有φ(n)=φ( p q)=φ(p)φ(q)=(p-1)(q-1)
这一条的证明要用到"中国剩余定理":如果 a (a < p) 与 p 互质,b (b < q) 与 q 互质,c (c < pq) 与 pq 互质,则 c 与数对 (a , b) 是一一对应关系。由于 a 的值有φ(p)种可能,b 的值有φ(q)种可能,则数对(a,b)有φ(p)φ(q)种可能,而c的值有φ(p
q)种可能,所以φ(p
q)=φ(p)φ(q)

费马小定律

欧拉定理的特殊情况:如果两个正整数m和n互质,而且n为质数!那么φ(n)结果就是n-1。

在这里插入图片描述

注:欧拉定理着重表示由m,n和φ(n)推出公式;费马小定律着重表示由公式推出φ(n)

对称加密与非对称加密

对称加密:

加密和解密共用同一个密钥的方式称为对称加密,也称为共享密钥加密

非对称加密:

使用公开密钥进行加密,使用私有密钥进行解密,其中的公开密钥可以随意发布,任何人都可知道,而私有密钥不能让其他人知道,此方式也称为公开密钥加密

RSA算法数学原理

RSA算法可用于公开密钥加密,其原理如下:
在这里插入图片描述

导出问题:

令公钥:e 和 n ,私钥:d 和 n, 明文:m ,密文:c;

由公钥加密和私钥解密的过程中知道:m^e mod N = cc^d mod n = m,则可得出m^(e*d) mod n ≡ m,进而得出m^(e*d-1) mod n ≡ m

由欧拉定理可得m^φ(n) mod n ≡ 1

由上述两式可得ed = k*φ(n)+1

在这里插入图片描述

解析问题:

其中e和n是公开的

n会非常大,长度一般为1024个二进制位。(目前人类已经分解的最大整数,232个十进制位,768个二进制位)

要想求出私钥 d 。由于e*d = k*φ(n) + 1,要知道e、k和φ(n),e是知道的;n也是知道的,由于 n=p1*p2,必须要算出p1 和 p2,只有将n因数分解才能算出,然后根据欧拉定理得出φ(n) = (p1 -1) * (p2 - 1)再算出φ(n) ,k是在运算过程中算出的能使d为整数的整数。

RSA算法的优缺点:

优点:相对安全

缺点:速度慢,需要用到一系列的数学运算

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值