题目描述
实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2^-2 = 1/2^2 = 1/4 = 0.25
说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1] 。
思路:
1.暴力,直观想法
直接模拟该过程,将 x 连乘 n 次;
时间复杂度为O(n),会超时不可取;
2.递归分治思想,使用公式 2^x = 2^x/2 * 2^x/2
时间复杂度为O(log n)。
代码1:暴力
public double myPow(double x, int n) {
long N = n;
if (N < 0) {
x = 1 / x;
N = -N;
}
double ans = 1;
for (long i = 0; i < N; i++)
ans = ans * x;
return ans;
}
代码2:错误版
public double myPow(double x, int n) {
if (x == 0) {
return 0;
}
if (n == 0) {
return 1.0;
}
if (n < 0) {
x = 1.0 / x;
n = -n;
}
double emp = myPow(x, n / 2);
if (n % 2 == 1) {
return emp * emp * x;
} else {
return emp * emp;
}
}
错误提示
代码2:改良版
private double fastPow(double x, long n) {
if (n == 0) {
return 1.0;
}
double half = fastPow(x, n / 2);
if (n % 2 == 0) {
return half * half;
} else {
return half * half * x;
}
}
public double myPow(double x, int n) {
long N = n;
if (N < 0) {
x = 1 / x;
N = -N;
}
return fastPow(x, N);
}
注意:
出现以上错误案例是因为和int的范围有关,[−2^ 31 , 2^ 31 − 1] ,所以当
n=-2147483648时,取他的相反数时int已经超出范围了,所以应该重新用long N来记录。