题目描述
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1,
然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。
但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
思路:
1.回溯,这是一个低效的解决方法。我们模拟从第一个位置跳到最后位置的所有方案。从第一个位置开始,模拟所有可以跳到的位置,然后从当前位置重复上述操作,当没有办法继续跳的时候,就回溯;
时间复杂度:O(2^n)
2.贪心,从倒数第二个元素遍历数组,判断当能元素否到达要到达的元素(nums[pos]),要到达的元素初始为最后一个元素,判断条件即为:nums[i]>=pos-i(当前元素的值为在此点时可跳的最大步数,所以只要当前元素的值大于等于当前点到要到达的点的索引差,表示可以到达),之后更新pos为i,i- -,直到遍历完数组,返回pos==0;
时间复杂度:O(n);
代码:
public boolean canJump(int[] nums) {
if (nums == null) {
return false;
}
// pos表示需要到达的位置
int pos = nums.length - 1;
for (int i = nums.length - 2; i >= 0; i--) {
if (nums[i] + i >= pos) {
pos = i;
}
}
return pos == 0;
}