题目描述
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
思路:
二维数组表示当天的收益,result [i] [k] i表示第几所房屋 k表示偷还是不偷(0是不偷,1是偷)
DP方程:
result[i][0] = Math.max(result[i - 1][0], result[i - 1][1]);
第i所房屋不偷 上一所没偷 上一所偷了
result[i][1] = result[i - 1][0] + nums[i];
第i所要偷 上一所必然不偷 第i所房屋里的现金
代码:
public int rob(int[] nums) {
if (nums.length == 0) {
return 0;
}
int[][] result = new int[nums.length][2];
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < 2; j++) {
if (i == 0) {
result[i][0] = 0;
result[i][1] = nums[i];
continue;
}
result[i][0] = Math.max(result[i - 1][0], result[i - 1][1]);
result[i][1] = result[i - 1][0] + nums[i];
}
}
return Math.max(result[nums.length - 1][0], result[nums.length - 1][1]);
}
一维数组空间优化, 用一维数组表示今天的最大收益,只需要比较i-1和i-2+nums[i] 的大小,为了避免i-2溢出,所以收益数组从下标1开始dp[i]表示第一所房子所能获得的最大收益,dp[0] = 0;
代码:
public int rob2(int[] nums) {
if (nums.length == 0) {
return 0;
}
int dp[] = new int[nums.length + 1];
dp[0] = 0;
dp[1] = nums[0];
for (int j = 2; j < dp.length; j++) {
dp[j] = Math.max(dp[j - 1], dp[j - 2] + nums[j - 1]);
}
return dp[dp.length - 1];
}