本文主要内容:
1. 介绍单自由度有阻尼自由振动;
2. 基于二阶常系数齐次线性微分方程求解振动;
3. 介绍无阻尼、过阻尼、临界阻尼、欠阻尼振动的区别;
4. 使用仿真软件Simulink绘制上述振动的位移曲线。
1 单自由度有阻尼自由振动
单自由度有阻尼自由振动是振动力学中一个基础而重要的概念,它涉及三个核心要素:
单自由度。它指的是振动系统只有一个独立的运动方向或振动模式,即系统只能在一个特定的轴线上进行往复运动。
有阻尼。阻尼是振动过程中系统所受到的阻力,它来源于多种因素,如材料内部的摩擦、结构间的接触摩擦以及周围介质对振动的阻碍等。阻尼的存在会消耗系统的机械能,导致振幅逐渐减小,振动逐渐衰减。
自由振动。它是指系统在没有外力作用下的振动。在单自由度有阻尼自由振动中,系统仅受初始条件(如初始位移和初始速度)的激励,随后在没有外力干扰的情况下振动。由于阻尼的存在,这种振动会逐渐减弱,直至最终停止。
2 求解单自由度有阻尼自由振动
对于上图所示的单自由度有阻尼自由振动,首先需要建立单自由度有阻尼自由振动的运动方程,由下式给出:
其中m、c、k分别代表系统的质量、阻尼和弹簧刚度。
上式是一种典型的二阶常系数齐次线性微分方程,求解该方程通常会假设解的形式:
其中A、s为待定常数。将假设解的形式代入到运动方程,可以得到特征方程:
注意到这里的特征根:
由此就可以给出运动方程的通解: