单自由度有阻尼自由振动:运动方程求解与Simulink实现

本文主要内容:

1. 介绍单自由度有阻尼自由振动;

2. 基于二阶常系数齐次线性微分方程求解振动;

3. 介绍无阻尼、过阻尼、临界阻尼、欠阻尼振动的区别;

4. 使用仿真软件Simulink绘制上述振动的位移曲线。

1 单自由度有阻尼自由振动

单自由度有阻尼自由振动是振动力学中一个基础而重要的概念,它涉及三个核心要素:

单自由度。它指的是振动系统只有一个独立的运动方向或振动模式,即系统只能在一个特定的轴线上进行往复运动。

有阻尼。阻尼是振动过程中系统所受到的阻力,它来源于多种因素,如材料内部的摩擦、结构间的接触摩擦以及周围介质对振动的阻碍等。阻尼的存在会消耗系统的机械能,导致振幅逐渐减小,振动逐渐衰减。

自由振动。它是指系统在没有外力作用下的振动。在单自由度有阻尼自由振动中,系统仅受初始条件(如初始位移和初始速度)的激励,随后在没有外力干扰的情况下振动。由于阻尼的存在,这种振动会逐渐减弱,直至最终停止。

2 求解单自由度有阻尼自由振动

对于上图所示的单自由度有阻尼自由振动,首先需要建立单自由度有阻尼自由振动的运动方程,由下式给出:

m\ddot{x} + c\dot{x} + kx = 0

其中m、c、k分别代表系统的质量、阻尼和弹簧刚度。

上式是一种典型的二阶常系数齐次线性微分方程,求解该方程通常会假设解的形式:

x(t)=Ae^{st}

其中A、s为待定常数。将假设解的形式代入到运动方程,可以得到特征方程:

ms^{2} + cs + k = 0

注意到这里的特征根:

s_{1,2}=\frac{-c\pm \sqrt{c^{2}-4mk}}{2m}

由此就可以给出运动方程的通解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸到鱼的钓鱼佬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值