bzoj 1013: [JSOI2008]球形空间产生器sphere 解题报告

Description

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2

0.0 0.0

-1.0 1.0

1.0 0.0

Sample Output

0.500 1.500

HINT

  提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B

的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +

… + (an-bn)^2 )

想说的话

这次决定实力自黑一波
给你们看几张图片先
这是我的提交过程
首先介绍ce
没错我就是用python交的
然后是pe
这里写图片描述
所以我们得知行末没有空格
接着是wa 这个wa得我想重头再学
这里写图片描述
没错为了空格不单判我先输出的第一维 然后没保留三位小数qwq
最后才ac
洛谷也是直接对了一个点(没保留小数怎么对的呢?!)
这里写图片描述

正解

按照题意列出方程组
这里写图片描述
当然了补充一句就是为了防止炸精度我用了1e-6的eps
但是身边的神犇说是不用 直接用0就行 我也没有尝试

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define N 20
#define eps 1e-6
int n;
double a[N][N],x[N],b[N],ans[N];
void gauss()
{
  for(int i=1;i<=n;i++)
  {
    int num=i;
    for(int j=i+1;j<=n;j++)
    {
      if( fabs(a[j][i]) > fabs(a[num][i]) )
      {
        num=j;
      }
    }
    for(int j=1;j<=n;j++) swap(a[i][j],a[num][j]);
    swap(b[i],b[num]);
    for(int j=i+1;j<=n;j++)
    {
      if( fabs(a[j][i])<=eps ) continue;
      double t=a[j][i]/a[i][i];
      for (int k=1;k<=n;++k)
        a[j][k]-=a[i][k]*t;
      b[j]-=b[i]*t;
    }
  }
  for (int i=n;i>=1;--i)
    {
        ans[i]=b[i]/a[i][i];
        for (int j=i;j>=1;--j)
            b[j]-=ans[i]*a[j][i];
    }
}
int main()
{
  scanf("%d",&n);
  for(int i=1;i<=n;i++) scanf("%lf",&x[i]);
  for(int i=1;i<=n;i++)
  {
    for(int j=1;j<=n;j++)
    {
      scanf("%lf",&x[0]);
      a[i][j]=2*(x[0]-x[j]);
      b[i]+=x[0]*x[0]-x[j]*x[j];
    }
  }
  gauss();
  printf("%.3lf",ans[1]);
  for (int i=2;i<=n;++i) printf(" %.3lf",ans[i]);
  cout<<endl;
}

写在最后

一定记住保留小数
如果怕忘就在输出里面单判格式
免得像我一样懒然后就忘了输出要求
qwq宝宝不开心

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值