Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
2
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
0.500 1.500
HINT
提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B
的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +
… + (an-bn)^2 )
想说的话
这次决定实力自黑一波
给你们看几张图片先
首先介绍ce
然后是pe
所以我们得知行末没有空格
接着是wa 这个wa得我想重头再学
没错为了空格不单判我先输出的第一维 然后没保留三位小数qwq
最后才ac
洛谷也是直接对了一个点(没保留小数怎么对的呢?!)
正解
按照题意列出方程组
当然了补充一句就是为了防止炸精度我用了1e-6的eps
但是身边的神犇说是不用 直接用0就行 我也没有尝试
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define N 20
#define eps 1e-6
int n;
double a[N][N],x[N],b[N],ans[N];
void gauss()
{
for(int i=1;i<=n;i++)
{
int num=i;
for(int j=i+1;j<=n;j++)
{
if( fabs(a[j][i]) > fabs(a[num][i]) )
{
num=j;
}
}
for(int j=1;j<=n;j++) swap(a[i][j],a[num][j]);
swap(b[i],b[num]);
for(int j=i+1;j<=n;j++)
{
if( fabs(a[j][i])<=eps ) continue;
double t=a[j][i]/a[i][i];
for (int k=1;k<=n;++k)
a[j][k]-=a[i][k]*t;
b[j]-=b[i]*t;
}
}
for (int i=n;i>=1;--i)
{
ans[i]=b[i]/a[i][i];
for (int j=i;j>=1;--j)
b[j]-=ans[i]*a[j][i];
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf",&x[i]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%lf",&x[0]);
a[i][j]=2*(x[0]-x[j]);
b[i]+=x[0]*x[0]-x[j]*x[j];
}
}
gauss();
printf("%.3lf",ans[1]);
for (int i=2;i<=n;++i) printf(" %.3lf",ans[i]);
cout<<endl;
}
写在最后
一定记住保留小数
如果怕忘就在输出里面单判格式
免得像我一样懒然后就忘了输出要求
qwq宝宝不开心