ACM寒假集训#7

动态规划-DP算法

它针对满足特定条件的一类问题,对各状态维度进行分阶段、有顺序、无重复、决策性的遍历求解。
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。

基本概念

多阶段决策问题
如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。
各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果。
动态规划问题中的术语
阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。
无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。
决策:一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。在最优控制中,也称为控制。在许多问题中,决策可以自然而然地表示为一个数或一组数。不同的决策对应着不同的数值。描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。
决策变量的范围称为允许决策集合。
策略:由每个阶段的决策组成的序列称为策略。对于每一个实际的多阶段决策过程,可供选取的策略有一定的范围限制,这个范围称为允许策略集合。
允许策略集合中达到最优效果的策略称为最优策略。
给定k阶段状态变量x(k)的值后,如果这一阶段的决策变量一经确定,第k+1阶段的状态变量x(k+1)也就完全确定,即x(k+1)的值随x(k)和第k阶段的决策u(k)的值变化而变化,那么可以把这一关系看成(x(k),u(k))与x(k+1)确定的对应关系,用x(k+1)=Tk(x(k),u(k))表示。这是从k阶段到k+1阶段的状态转移规律,称为状态转移方程。
最优化原理:作为整个过程的最优策略,它满足:相对前面决策所形成的状态而言,余下的子策略必然构成“最优子策略”。
最优性原理实际上是要求问题的最优策略的子策略也是最优。

题目示例-三角形

Description

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

(图一)

图一表示一个5行的数字三角形。假设给定一个n行数字三角形,计算出从三角形顶至底的一条路径,使该路径经过的数字总和最大。每一步只能由当前位置向左下或右下。

Input

你的程序要能接受标准输入。第一行包含一个整数T,表示总的测试次数。

对于每一种情况:第一行包含一个整数N,其中1<N<100,表示三角形的行数。

接下来的N行输入表示三角形的每一行的元素Aij,其中0<=Aij<100。

Output

输出每次测试的最大值并占一行。

Sample Input

1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

Sample Output

30

解题思路

用二维数组存放数字三角形。
a(i,j):第i行第j个数字(i,j从1开始算)
MaxSum(i,j):从a(i,j)到底边的各条路径中
最佳路径的数字之和。
问题:求MaxSum(1,1);
典型的递归问题
a(i,j)出发,下一步只能走a(i+1,j)或者a(i+1,j+1)。故对于N行的三角形;

if(i==n)
	MaxSum(i,j)=a(i,j);
else
	MaxSum(i,j)=Max{MaxSum(i+1,j),MaxSum(i+1,j+1)}+D(i+j) 
	//D(i+j)是当前的元素

代码示例

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e2+10;
int a[N][N],maxsum[N][N];
int n;
int MaxSum(int i,int j){
	if(i==n)return a[i][j];
	else return max(MaxSum(i+1,j),MaxSum(i+1,j+1))+a[i][j];
}
int main(){
	int T;
	cin>>T;
	while(T--){
		cin>>n;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=i;j++)cin>>a[i][j];
		}
		cout<<MaxSum(1,1)<<endl;
	}
}

上面这个代码可以解决一部分简单的dp递归题目,但是对于元素量较大的样例则会产生超时问题,这里就要将递归变成递推。我们将代码做一些更改,对其进行优化以解决这个问题。

代码示例#2

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e2+10;
int a[N][N],maxsum[N][N];
int n;
int MaxSum(int i,int j){

	if(maxsum[i][j]!= -1)return maxsum[i][j];
	
	if(i==n)return a[i][j];
	else return maxsum[i][j]=max(MaxSum(i+1,j),MaxSum(i+1,j+1))+a[i][j];
}
int main(){
	int T;
	cin>>T;
	while(T--){
		cin>>n;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=i;j++)cin>>a[i][j],maxsum[i][j]=-1;
		}
		cout<<MaxSum(1,1)<<endl;
	}
}

这样多利用了一个二维数组储存已经经过计算的maxsum值,则可以大量减少计算量,也就是将递归变为了递推,大大减少了运算时间从而避免了超时问题的产生。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值