概率)第一章 随机事件与概率
概率)第二章 一维随机变量及其分布(未完成)
概率)第三章 二维随机变量及其分布(未完成)
概率)第四章 随机变量的数字特征(未完成)
概率)第五章 大数定律与中心极限定理(未完成)
概率)第六章 数理统计基本概念(未完成)
概率)第七章 参数估计(未完成)
概率)第八章 假设检验(未完成)
概率乘法公式
P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)=P(A)P(B|A) P(AB)=P(A)P(B∣A)
条件概率
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\dfrac{P(AB)}{P(A)} P(B∣A)=P(A)P(AB)
全概率公式
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B)=\sum_{i=1}^{n}P(A_{i})P(B|A_{i}) P(B)=i=1∑nP(Ai)P(B∣Ai)
贝叶斯公式
P
(
A
i
∣
B
)
=
P
(
A
i
B
)
P
(
B
)
=
P
(
A
i
)
P
(
B
∣
A
i
)
∑
i
=
1
n
P
(
A
i
)
P
(
B
∣
A
i
)
P(A_{i}|B)=\dfrac{P(A_{i}B)}{P(B)}=\dfrac{P(A_{i})P(B|A_{i})}{\sum_{i=1}^{n}P(A_{i})P(B|A_{i})}
P(Ai∣B)=P(B)P(AiB)=∑i=1nP(Ai)P(B∣Ai)P(Ai)P(B∣Ai)
公式中,事件
A
i
A_{i}
Ai 的概率为
P
(
A
i
)
P(A_{i})
P(Ai),事件
A
i
A_{i}
Ai 已发生条件下事件
B
B
B 发生的概率为
P
(
B
│
A
i
)
P(B│A_{i})
P(B│Ai),事件
B
B
B 发生的条件下事件
A
i
A_{i}
Ai 发生的概率为
P
(
A
i
│
B
)
P(A_{i}│B)
P(Ai│B)。
在古典概型中的计算
(1)从n个不同的元素中有放回地每次抽取一个,依次抽取m个排成一列,可以得到 n m n^{m} nm 个不同排列,当随机抽取时,得到的不同排列是等可能的。
(2)从n个不同的元素中(无放回地)抽取m个元素排成一列时,可以得到
A n m = n ! ( n − m ) ! A_{n}^{m}=\dfrac{n!}{(n-m)!} Anm=(n−m)!n!个不同的排列。当随机抽取和排列时,得到的不同排列是等可能的。
(3)从n个不同的元素中(无放回地)抽取m个元素,不论次序地组成一组,可以得到
C n m = n ! m ! ( n − m ) ! C_{n}^{m}=\dfrac{n!}{m!(n-m)!} Cnm=m!(n−m)!n!个不同的组合,当随机抽取时,得到的不同组合是等可能的。