第一章 随机事件与概率

概率)第一章 随机事件与概率
概率)第二章 一维随机变量及其分布(未完成)
概率)第三章 二维随机变量及其分布(未完成)
概率)第四章 随机变量的数字特征(未完成)
概率)第五章 大数定律与中心极限定理(未完成)
概率)第六章 数理统计基本概念(未完成)
概率)第七章 参数估计(未完成)
概率)第八章 假设检验(未完成)

概率乘法公式

P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)=P(A)P(B|A) P(AB)=P(A)P(BA)

条件概率

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\dfrac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

全概率公式

P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B)=\sum_{i=1}^{n}P(A_{i})P(B|A_{i}) P(B)=i=1nP(Ai)P(BAi)

贝叶斯公式

P ( A i ∣ B ) = P ( A i B ) P ( B ) = P ( A i ) P ( B ∣ A i ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(A_{i}|B)=\dfrac{P(A_{i}B)}{P(B)}=\dfrac{P(A_{i})P(B|A_{i})}{\sum_{i=1}^{n}P(A_{i})P(B|A_{i})} P(AiB)=P(B)P(AiB)=i=1nP(Ai)P(BAi)P(Ai)P(BAi)
公式中,事件 A i A_{i} Ai 的概率为 P ( A i ) P(A_{i}) P(Ai),事件 A i A_{i} Ai 已发生条件下事件 B B B 发生的概率为 P ( B │ A i ) P(B│A_{i}) P(BAi),事件 B B B 发生的条件下事件 A i A_{i} Ai 发生的概率为 P ( A i │ B ) P(A_{i}│B) P(AiB)

在古典概型中的计算

(1)从n个不同的元素中有放回地每次抽取一个,依次抽取m个排成一列,可以得到 n m n^{m} nm 个不同排列,当随机抽取时,得到的不同排列是等可能的。

(2)从n个不同的元素中(无放回地)抽取m个元素排成一列时,可以得到
A n m = n ! ( n − m ) ! A_{n}^{m}=\dfrac{n!}{(n-m)!} Anm=(nm)!n!个不同的排列。当随机抽取和排列时,得到的不同排列是等可能的。

(3)从n个不同的元素中(无放回地)抽取m个元素,不论次序地组成一组,可以得到
C n m = n ! m ! ( n − m ) ! C_{n}^{m}=\dfrac{n!}{m!(n-m)!} Cnm=m!(nm)!n!个不同的组合,当随机抽取时,得到的不同组合是等可能的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值