Leetcode_不同的二叉搜索树

这篇博客探讨了LeetCode上的一道题目,即如何计算具有特定节点数且节点值互不相同的二叉搜索树的种类。通过动态规划的方法,博主详细解析了如何利用二叉搜索树的性质来解决此问题。代码实现中,博主展示了如何初始化dp数组,并通过遍历所有可能的根节点,计算每种情况下的树的总数。此解法巧妙地利用了二叉搜索树的性质,简化了计算过程。
摘要由CSDN通过智能技术生成

Leetcode_不同的二叉搜索树

题目

给你一个整数n,求恰由n个节点组成且节点值从1n互不相同的二叉搜索树有多少种?返回满足题意的二叉搜索树的种数。

 

题解

思路:dp时间到!注意到二叉搜索树的性质使得当[1, n]中的某一个数m为根的时候,根的两侧分别为[1, m - 1][m + 1, n]。两侧都是连续的数字,且数量小于n,满足dp性质。所以从n = 0, 1的时候开始构建。对每一棵结点数固定的二叉搜索树,分别考虑[1, n]中每一个数为根的情况进行累加。

int numTrees(int n) {
   int num[n + 1];
    num[0] = 1;
    num[1] = 1;
    int sum;
    for(int i = 2; i <= n; i++){  // 搜索树结点数为i
        sum = 0;
        for(int j = 0; j < i; j++){  // 根结点为j的情况
            sum += num[j] * num[i - 1 - j];
        }
        num[i] = sum;
    }
    return num[n];
}

用vector初始化为0可以避免使用变量sum,但跑出来用vector占用的空间反而更大,最后还是选用了数组的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值