前言
接上篇,由于公司业务调整,老板让所有的开发开始学python,并一人分配了一个语言模型,要求进行自己尝试搭建部署,而分到我的是Alpaca。
于是Java还没写明白,python才刚刚安装好的我,又要开始从无到有搭建大语言模型了,(这个B班真是一天都不想上了)奶思!
了解Alpaca
Alpaca建立在 Meta 的 LLaMA 之上,其唯一目标是使 LLM 更便宜。基于斯坦福大学研究中心所做的先前研究和基准。羊驼模型可以低至 600 美元进行再训练,考虑到由此带来的好处,这很便宜。
它们也是另外两个羊驼变种模型Alpaca.cpp和Alpaca-LoRA。使用 cpp 变体,您可以使用具有 4GB 权重的 M2 Macbook Air 在笔记本电脑上本地运行类似 Fast ChatGPT 的模型,当今大多数笔记本电脑都应该能够处理。CPP 变体结合了 Facebook 的 LLaMA、Stanford Alpaca、alpaca-Lora 以及相应的权重。您可以在此处找到有关如何进行微调的数据。
资源:
博客:斯坦福大学CRFM
GitHub:tatsu-lab/stanford_alpaca
Alpaca体验地址(官方演示已经丢失,这是Alpaca模型的再现)
附录
以下是本文借鉴参考的原文章,感谢各位大佬的文章分享:
开箱即用的ChatGPT替代模型,还可训练自己数据
从0到1复现斯坦福羊驼(Stanford Alpaca 7B)