回顾|Let‘s Learn MCP:Python & C#

点击蓝字

关注我们

编辑/排版:Alan Wang

随着多模态大模型的发展,模型与外部系统的交互复杂度迅速提升。传统的 API 调用方式难以满足模型在上下文理解、动态任务执行、长期记忆管理等方面的需求。在这一背景下,Model Context Protocol(MCP)应运而生。作为一个用于协调 AI 模型与客户端应用之间上下文交换、函数调用、状态管理的前沿协议框架,MCP 能够帮助我们规范 AI 模型与客户端应用之间的交互,通过为模型提供结构化、可扩展的上下文输入方式,使模型不仅能“看见”当下的指令,还能理解任务的来龙去脉,从而实现更自然、连续、高效的智能体交互体验。

为帮助 MCP 初学者快速了解、掌握并上手 MCP 的核心概念与搭建技巧,7月23日,微软高级云技术布道师 卢建晖 面向初学者带来 MCP 动手工作坊,带我们从零开始搭建第一个 MCP 服务器,体验模型与应用之间的高效协同,快速上手 MCP 这一前沿协议框架。

分享嘉宾

卢建晖 Kinfey Lo

微软高级云技术布道师

在 AI Core Team 负责小模型 Phi 3 在全球的技术内容推广,有超过18年的金融、电信、教育等领域的行业解决方案经验,专注在云原生、人工智能、大数据、物联网等领域。在 GenAI 领域著有围绕小模型的《Phi-3 Cookbook》(阅读量超过40万)和 Copilot 应用框架《Semantic Kernel Cookbook》,并为不同客户提供基于 LLMOps 和 SLMOps 的一体化解决方案。

主办方

MSReactor

扫码|关注我们

Bilibili|微软Reactor_SH

视频号|MSFTReactor

活动行|微软Reactor 上海

内容概要:本文围绕“考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化”展开研究,提出了一种结合阶梯式碳交易机制和电解水制氢技术的综合能源系统优化模型。通过Matlab代码实现,该模型综合考虑电力与热力系统的耦合关系,优化系统运行成本与碳排放,提升可再生能源消纳能力。研究重点在于引入阶梯式碳交易机制以激励低碳运行,并利用电制氢作为灵活负荷调节手段,增强系统调峰能力和能源利用效率,最终实现经考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化(Matlab代码实现)济性与环保性的协同优化。; 适合人群:具备一定电力系统、能源系统或优化建模背景的科研人员及工程技术人员,尤其适合从事综合能源系统、碳交易机制、氢能利用等相关领域研究的硕博研究生和科研工作者。; 使用场景及目标:①研究综合能源系统中电-热协同优化调度策略;②探索阶梯式碳交易机制对系统低碳运行的影响;③分析电制氢技术在提升系统灵活性和可再生能源消纳方面的潜力;④为实际能源系统规划与政策制定提供量化分析工具与仿真支持。; 阅读建议:建议结合Matlab代码深入理解模型构建过程,重点关注目标函数设计、约束条件设置及求解流程,可进一步扩展至多时间尺度调度、不确定性建模等方向进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值