【LeetCode动态规划标签入门总结】 线性DP(持续更新)

本文介绍了动态规划的概念,并通过LeetCode题目详细讲解了线性DP的应用,包括最大子序和、不同路径、有障碍物的路径和最小路径和等问题,提供了AC代码及空间优化方案。
摘要由CSDN通过智能技术生成

动态规划

动态规划(Dynamic Programming),简称DP,为了求最优解,我们可以将问题分成多个子问题,先求子问题的最优解,从而递推出全局最优解,动态规划的思想基于分治。

动态规划一般要考虑状态表示和状态方程。考虑到有些DP问题时间复杂度较大,一般用迭代,也可以用递归来写。

线性DP

线性DP最大的特征是从一个最小的子问题来向大的问题推导的。所以叫线性DP,例如斐波那契数列

53. 最大子序和

image-20201113110940572

分析

在该问题上,最小的子问题是序列只有一个数字,那么子序列和最大值肯定是该数字本身。

如果有两个数字,要么是和第一个数字组成的序列和最大,要么是将第二数字看成一个子序列和最大。

如果再加一个数字,先看看前面子序列和最大是多少,再看看新加的第三个数字和之前序列最大值比较。

如此推导。那么我们可以用以下的状态表示,并且得到如下的状态方程

状态表示: f[i]表示以nums[i]结尾的子序列和 的最大值。

状态方程:f[i] = max(nums[i] , f[i - 1] + nums[i])

如果是[INT_MIN,负数] 组成的序列,我们会发现上面的状态方程会移除,我们只需要做一下等式变形,避免移除。变形后的状态方程f[i] = nums[i] + max(0 , f[i - 1])

时间复杂度O(N),空间复杂度O(N)

AC代码:

LeetCode的测试数据并没有卡溢出的数据。但是严谨起见,特意做了优化。

class Solution {
   
public:
    int maxSubArray(vector<int>& nums) {
   
        int n = nums.size();
        int f[n];
        int res = INT_MIN;
        for (int i = 0; i < n ; i ++){
   
            f[i] = nums[i];
            if (i) f[i] = nums[i] + max(0 , f[i - 1]);
            res = max(res , f[i]);
        }

        return res;
    }
};

空间优化

我们还发现,从递推的过程中,我们对于每次求解以任意一个数结尾的最大子序列和时,我们只需要知道以前一个数结尾的最大子序列和,所以我们在迭代过程中,我们用一个变量来记录上一个状态(即以前一个数结尾的最大子序列和),从而省去记录所有状态的数组。从而空间复杂度优化到O(1)

优化后代码:

class Solution {
   
public:
    int maxSubArray(vector<int>& nums) {
   
        int res = INT_MIN;
        int last = INT_MIN;
        for (int i = 0; i < nums.size() ; i ++){
   
            last = nums[i] + max(0 , last)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值