HDU 5731 Solid Dominoes Tilings(轮廓线DP+容斥)

[题目链接]

[题意]
用1*2的多米诺骨牌完美覆盖n*m的网格,且不存在水平或竖直分割线,求方法数

[分析]
若没有分割线的限制,则此题变为了轮廓线DP入门题POJ 2411
加入了限制条件后,则要减去不合法的情况。但分割线的组合很多,所以考虑用容斥定理,加加减减。。。

初步想法:
将无限制的算法稍加修改(行转移时,不转移排满的情况),则得到了无行分割线的方案数
枚举列分割线,使用容斥定理统计答案
发现问题:
当确定列分割线后,把原网格分为了几个部分,使用乘法原理将他们不含行分割线的方案乘起来。
但事实上,可以允许某些部分含有行分割线,而整体却不含,统计时漏掉了这部分方案
改进:
确定了列分割线后,逐行递推地计算在当前列分割下,不含行分割线的方案数
设dp[i]为在当前列分割下,1~i行无行分割线的方案数
则dp[i]可以由dp[1]~dp[i-1]递推
公式为 dp[i]=g[i]i1j=1dp[ij]g[j]
其中g[j]为在当前列分割下,1-j行无行限制的方案数,对与两条相邻分割线(包括边界线)内的部分,本质上就是无任何限制的完美覆盖,可以预处理出来,各个部分用乘法原理全部乘起来即可
枚举列分割线的所有 2m1 种选择,根据线的条数奇加偶减的统计即可

可能本弱写的丑,直接预处理无任何限制的方案会TLE,这里打表通过了。

[代码]

#include <bits/stdc++.h>
using namespace std ;
typedef long long LL ;
const int mod = 1e9 + 7 ;
const int N = 17 ;

int n , m , t ;
LL dp[2][(1<<16)+5] ;
LL cnt[N][N] ;

void init()
{
    cnt[1][1] = cnt[1][1] = 0 ;
    cnt[2][1] = cnt[1][2] = 1 ;
    cnt[2][2] = cnt[2][2] = 2 ;
    cnt[3][1] = cnt[1][3] = 0 ;
    cnt[3][2] = cnt[2][3] = 3 ;
    cnt[3][3] = cnt[3][3] = 0 ;
    cnt[4][1] = cnt[1][4] = 1 ;
    cnt[4][2] = cnt[2][4] = 5 ;
    cnt[4][3] = cnt[3][4] = 11 ;
    cnt[4][4] = cnt[4][4] = 36 ;
    cnt[5][1] = cnt[1][5] = 0 ;
    cnt[5][2] = cnt[2][5] = 8 ;
    cnt[5][3] = cnt[3][5] = 0 ;
    cnt[5][4] = cnt[4][5] = 95 ;
    cnt[5][5] = cnt[5][5] = 0 ;
    cnt[6][1] = cnt[1][6] = 1 ;
    cnt[6][2] = cnt[2][6] = 13 ;
    cnt[6][3] = cnt[3][6] = 41 ;
    cnt[6][4] = cnt[4][6] = 281 ;
    cnt[6][5] = cnt[5][6] = 1183 ;
    cnt[6][6] = cnt[6][6] = 6728 ;
    cnt[7][1] = cnt[1][7] = 0 ;
    cnt[7][2] = cnt[2][7] = 21 ;
    cnt[7][3] = cnt[3][7] = 0 ;
    cnt[7][4] = cnt[4][7] = 781 ;
    cnt[7][5] = cnt[5][7] = 0 ;
    cnt[7][6] = cnt[6][7] = 31529 ;
    cnt[7][7] = cnt[7][7] = 0 ;
    cnt[8][1] = cnt[1][8] = 1 ;
    cnt[8][2] = cnt[2][8] = 34 ;
    cnt[8][3] = cnt[3][8] = 153 ;
    cnt[8][4] = cnt[4][8] = 2245 ;
    cnt[8][5] = cnt[5][8] = 14824 ;
    cnt[8][6] = cnt[6][8] = 167089 ;
    cnt[8][7] = cnt[7][8] = 1292697 ;
    cnt[8][8] = cnt[8][8] = 12988816 ;
    cnt[9][1] = cnt[1][9] = 0 ;
    cnt[9][2] = cnt[2][9] = 55 ;
    cnt[9][3] = cnt[3][9] = 0 ;
    cnt[9][4] = cnt[4][9] = 6336 ;
    cnt[9][5] = cnt[5][9] = 0 ;
    cnt[9][6] = cnt[6][9] = 817991 ;
    cnt[9][7] = cnt[7][9] = 0 ;
    cnt[9][8] = cnt[8][9] = 108435745 ;
    cnt[9][9] = cnt[9][9] = 0 ;
    cnt[10][1] = cnt[1][10] = 1 ;
    cnt[10][2] = cnt[2][10] = 89 ;
    cnt[10][3] = cnt[3][10] = 571 ;
    cnt[10][4] = cnt[4][10] = 18061 ;
    cnt[10][5] = cnt[5][10] = 185921 ;
    cnt[10][6] = cnt[6][10] = 4213133 ;
    cnt[10][7] = cnt[7][10] = 53175517 ;
    cnt[10][8] = cnt[8][10] = 31151234 ;
    cnt[10][9] = cnt[9][10] = 479521663 ;
    cnt[10][10] = cnt[10][10] = 584044562 ;
    cnt[11][1] = cnt[1][11] = 0 ;
    cnt[11][2] = cnt[2][11] = 144 ;
    cnt[11][3] = cnt[3][11] = 0 ;
    cnt[11][4] = cnt[4][11] = 51205 ;
    cnt[11][5] = cnt[5][11] = 0 ;
    cnt[11][6] = cnt[6][11] = 21001799 ;
    cnt[11][7] = cnt[7][11] = 0 ;
    cnt[11][8] = cnt[8][11] = 940739768 ;
    cnt[11][9] = cnt[9][11] = 0 ;
    cnt[11][10] = cnt[10][11] = 472546535 ;
    cnt[11][11] = cnt[11][11] = 0 ;
    cnt[12][1] = cnt[1][12] = 1 ;
    cnt[12][2] = cnt[2][12] = 233 ;
    cnt[12][3] = cnt[3][12] = 2131 ;
    cnt[12][4] = cnt[4][12] = 145601 ;
    cnt[12][5] = cnt[5][12] = 2332097 ;
    cnt[12][6] = cnt[6][12] = 106912793 ;
    cnt[12][7] = cnt[7][12] = 188978103 ;
    cnt[12][8] = cnt[8][12] = 741005255 ;
    cnt[12][9] = cnt[9][12] = 528655152 ;
    cnt[12][10] = cnt[10][12] = 732130620 ;
    cnt[12][11] = cnt[11][12] = 177126748 ;
    cnt[12][12] = cnt[12][12] = 150536661 ;
    cnt[13][1] = cnt[1][13] = 0 ;
    cnt[13][2] = cnt[2][13] = 377 ;
    cnt[13][3] = cnt[3][13] = 0 ;
    cnt[13][4] = cnt[4][13] = 413351 ;
    cnt[13][5] = cnt[5][13] = 0 ;
    cnt[13][6] = cnt[6][13] = 536948224 ;
    cnt[13][7] = cnt[7][13] = 0 ;
    cnt[13][8] = cnt[8][13] = 164248716 ;
    cnt[13][9] = cnt[9][13] = 0 ;
    cnt[13][10] = cnt[10][13] = 186229290 ;
    cnt[13][11] = cnt[11][13] = 0 ;
    cnt[13][12] = cnt[12][13] = 389322891 ;
    cnt[13][13] = cnt[13][13] = 0 ;
    cnt[14][1] = cnt[1][14] = 1 ;
    cnt[14][2] = cnt[2][14] = 610 ;
    cnt[14][3] = cnt[3][14] = 7953 ;
    cnt[14][4] = cnt[4][14] = 1174500 ;
    cnt[14][5] = cnt[5][14] = 29253160 ;
    cnt[14][6] = cnt[6][14] = 720246619 ;
    cnt[14][7] = cnt[7][14] = 124166811 ;
    cnt[14][8] = cnt[8][14] = 498190405 ;
    cnt[14][9] = cnt[9][14] = 764896039 ;
    cnt[14][10] = cnt[10][14] = 274787842 ;
    cnt[14][11] = cnt[11][14] = 513673802 ;
    cnt[14][12] = cnt[12][14] = 371114062 ;
    cnt[14][13] = cnt[13][14] = 351258337 ;
    cnt[14][14] = cnt[14][14] = 722065660 ;
    cnt[15][1] = cnt[1][15] = 0 ;
    cnt[15][2] = cnt[2][15] = 987 ;
    cnt[15][3] = cnt[3][15] = 0 ;
    cnt[15][4] = cnt[4][15] = 3335651 ;
    cnt[15][5] = cnt[5][15] = 0 ;
    cnt[15][6] = cnt[6][15] = 704300462 ;
    cnt[15][7] = cnt[7][15] = 0 ;
    cnt[15][8] = cnt[8][15] = 200052235 ;
    cnt[15][9] = cnt[9][15] = 0 ;
    cnt[15][10] = cnt[10][15] = 732073997 ;
    cnt[15][11] = cnt[11][15] = 0 ;
    cnt[15][12] = cnt[12][15] = 65334618 ;
    cnt[15][13] = cnt[13][15] = 0 ;
    cnt[15][14] = cnt[14][15] = 236847118 ;
    cnt[15][15] = cnt[15][15] = 0 ;
    cnt[16][1] = cnt[1][16] = 1 ;
    cnt[16][2] = cnt[2][16] = 1597 ;
    cnt[16][3] = cnt[3][16] = 29681 ;
    cnt[16][4] = cnt[4][16] = 9475901 ;
    cnt[16][5] = cnt[5][16] = 366944287 ;
    cnt[16][6] = cnt[6][16] = 289288426 ;
    cnt[16][7] = cnt[7][16] = 708175999 ;
    cnt[16][8] = cnt[8][16] = 282756494 ;
    cnt[16][9] = cnt[9][16] = 416579196 ;
    cnt[16][10] = cnt[10][16] = 320338127 ;
    cnt[16][11] = cnt[11][16] = 881924366 ;
    cnt[16][12] = cnt[12][16] = 119004311 ;
    cnt[16][13] = cnt[13][16] = 144590622 ;
    cnt[16][14] = cnt[14][16] = 451896972 ;
    cnt[16][15] = cnt[15][16] = 974417347 ;
    cnt[16][16] = cnt[16][16] = 378503901 ;
}

void update( int a , int b )
{
    if( b&(1<<m) )
        ( dp[!t][b^(1<<m)] += dp[t][a] ) %= mod ;
}

void cal( )
{
    int e = (1<<m)-1 ; t = 0 ;
    memset(dp,0,sizeof dp) ;
    dp[t][e] = 1 ;
    for( int i = 0 ; i < n ; i++ )
    {
        for( int j = 0 ; j < m ; j++ )
        {
            memset(dp[!t],0,sizeof(dp[!t])) ;
            for( int k = 0 ; k <= e ; k++ )
            {
                update(k,k<<1) ;
                if( i && ~k&(1<<m-1) ) update(k,(k<<1)^(1<<m)^1) ;
                if( j && ~k&1 ) update(k,(k<<1)^3) ;
            }
            t = !t ;
        }
    }
    cnt[n][m] = cnt[m][n] = dp[t][e] ;
    printf( "cnt[%d][%d] = cnt[%d][%d] = %I64d ;\n" , n , m , m , n , cnt[n][m]%mod ) ;
}

LL DP( int n , int m )
{
    LL dp[N] , res = 0 ;
    int bit[N] , k ;
    for( int s = 0 ; s < 1<<(m-1) ; s++ )
    {
        bit[k=0] = -1 ;
        for( int i = 0 ; i < m-1 ; i++ )
            if( s&(1<<i) )
                bit[++k] = i ;
        bit[++k] = m-1 ;
        for( int i = 1 ; i <= n ; i++ )
        {
            for( int j = 0 ; j < i ; j++ )
            {
                LL tot = 1 ;
                for( int p = 0 ; p < k ; p++ )
                    tot = tot*cnt[i-j][bit[p+1]-bit[p]]%mod ;
                dp[i] = j ? ( dp[i] - tot*dp[j]%mod + mod ) % mod : tot ;
            }
        }
        if( ~k&1 ) res = ( res - dp[n] + mod ) % mod ;
        else res = ( res + dp[n] ) % mod ;
    }
    return res ;
}

int main()
{
    /*
    for( n = 1 ; n <= 16 ; n++ )
        for( m = 1 ; m <= n ; m++ )
            cal() ;
    */
    init() ;
    while( ~scanf( "%d%d" , &n , &m ) )
    {
        if( n < m ) swap(n,m) ;
        printf( "%d\n" , DP(n,m) ) ;
    }
    return 0 ;
}

既然都打表了,那干脆把ans也打个表刷个0ms吧,233
这里把答案表贴出来供小伙伴们对拍吧~

    ans[1][1] = 0 ;
    ans[2][1] = 1 ;
    ans[2][2] = 0 ;
    ans[3][1] = 0 ;
    ans[3][2] = 0 ;
    ans[3][3] = 0 ;
    ans[4][1] = 0 ;
    ans[4][2] = 0 ;
    ans[4][3] = 0 ;
    ans[4][4] = 0 ;
    ans[5][1] = 0 ;
    ans[5][2] = 0 ;
    ans[5][3] = 0 ;
    ans[5][4] = 0 ;
    ans[5][5] = 0 ;
    ans[6][1] = 0 ;
    ans[6][2] = 0 ;
    ans[6][3] = 0 ;
    ans[6][4] = 0 ;
    ans[6][5] = 6 ;
    ans[6][6] = 0 ;
    ans[7][1] = 0 ;
    ans[7][2] = 0 ;
    ans[7][3] = 0 ;
    ans[7][4] = 0 ;
    ans[7][5] = 0 ;
    ans[7][6] = 124 ;
    ans[7][7] = 0 ;
    ans[8][1] = 0 ;
    ans[8][2] = 0 ;
    ans[8][3] = 0 ;
    ans[8][4] = 0 ;
    ans[8][5] = 108 ;
    ans[8][6] = 62 ;
    ans[8][7] = 13514 ;
    ans[8][8] = 25506 ;
    ans[9][1] = 0 ;
    ans[9][2] = 0 ;
    ans[9][3] = 0 ;
    ans[9][4] = 0 ;
    ans[9][5] = 0 ;
    ans[9][6] = 1646 ;
    ans[9][7] = 0 ;
    ans[9][8] = 991186 ;
    ans[9][9] = 0 ;
    ans[10][1] = 0 ;
    ans[10][2] = 0 ;
    ans[10][3] = 0 ;
    ans[10][4] = 0 ;
    ans[10][5] = 1182 ;
    ans[10][6] = 1630 ;
    ans[10][7] = 765182 ;
    ans[10][8] = 3103578 ;
    ans[10][9] = 262834138 ;
    ans[10][10] = 759280991 ;
    ans[11][1] = 0 ;
    ans[11][2] = 0 ;
    ans[11][3] = 0 ;
    ans[11][4] = 0 ;
    ans[11][5] = 0 ;
    ans[11][6] = 18120 ;
    ans[11][7] = 0 ;
    ans[11][8] = 57718190 ;
    ans[11][9] = 0 ;
    ans[11][10] = 264577134 ;
    ans[11][11] = 0 ;
    ans[12][1] = 0 ;
    ans[12][2] = 0 ;
    ans[12][3] = 0 ;
    ans[12][4] = 0 ;
    ans[12][5] = 10338 ;
    ans[12][6] = 25654 ;
    ans[12][7] = 32046702 ;
    ans[12][8] = 238225406 ;
    ans[12][9] = 462717719 ;
    ans[12][10] = 712492587 ;
    ans[12][11] = 759141342 ;
    ans[12][12] = 398579168 ;
    ans[13][1] = 0 ;
    ans[13][2] = 0 ;
    ans[13][3] = 0 ;
    ans[13][4] = 0 ;
    ans[13][5] = 0 ;
    ans[13][6] = 180288 ;
    ans[13][7] = 0 ;
    ans[13][8] = 965022920 ;
    ans[13][9] = 0 ;
    ans[13][10] = 886997066 ;
    ans[13][11] = 0 ;
    ans[13][12] = 83006813 ;
    ans[13][13] = 0 ;
    ans[14][1] = 0 ;
    ans[14][2] = 0 ;
    ans[14][3] = 0 ;
    ans[14][4] = 0 ;
    ans[14][5] = 79818 ;
    ans[14][6] = 317338 ;
    ans[14][7] = 136189727 ;
    ans[14][8] = 388537910 ;
    ans[14][9] = 560132342 ;
    ans[14][10] = 577689269 ;
    ans[14][11] = 567660301 ;
    ans[14][12] = 821419653 ;
    ans[14][13] = 690415372 ;
    ans[14][14] = 796514774 ;
    ans[15][1] = 0 ;
    ans[15][2] = 0 ;
    ans[15][3] = 0 ;
    ans[15][4] = 0 ;
    ans[15][5] = 0 ;
    ans[15][6] = 1684956 ;
    ans[15][7] = 0 ;
    ans[15][8] = 937145938 ;
    ans[15][9] = 0 ;
    ans[15][10] = 510014880 ;
    ans[15][11] = 0 ;
    ans[15][12] = 942235780 ;
    ans[15][13] = 0 ;
    ans[15][14] = 696587391 ;
    ans[15][15] = 0 ;
    ans[16][1] = 0 ;
    ans[16][2] = 0 ;
    ans[16][3] = 0 ;
    ans[16][4] = 0 ;
    ans[16][5] = 570342 ;
    ans[16][6] = 3416994 ;
    ans[16][7] = 378354090 ;
    ans[16][8] = 315565230 ;
    ans[16][9] = 699538539 ;
    ans[16][10] = 807555438 ;
    ans[16][11] = 47051173 ;
    ans[16][12] = 558077885 ;
    ans[16][13] = 620388364 ;
    ans[16][14] = 175421667 ;
    ans[16][15] = 856463275 ;
    ans[16][16] = 341279366 ;
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值