一、引例——P738.
大数高精度数值计算
题目描述:假设你正在开发一个高精度计算系统,需要存储和管理超过2^32的整数。该系统要求能够实现两个大整数的加法运算。
输入说明:输入两行,每行为1个大整数,该大整数为正数,位数不超过100位。
输出说明:输出两个大整数的和。
输入样例:
11111111111111111111
11111111111111111111
输出样例:
22222222222222222222
本题涉及到大数计算,而已知大数长度超出long long,故需要另作处理。
一般使用字符串数组解决。
二、解题思路
步骤 1:理解输入与输出
输入两个大整数,可能长达 100 位。
输出一个大整数,表示输入的两个大整数的和。
步骤 2:逐位加法
我们可以从两个大整数的最低位(即最后一位)开始进行加法。
每一位加法都会有进位,因此需要一个变量来存储进位。
步骤 3:设置两个指针
我们可以使用两个指针分别指向两个大整数的最后一位,即 num1[len1-1] 和 num2[len2-1],其中 len1 和 len2 是 num1 和 num2 的长度。
步骤 4:逐位加法过程
初始化:
进位 carry 初始化为 0。
用一个数组 result 存储计算结果。
从最低位开始逐位加:
如果当前位有数字,就加上数字。
如果某个数已经加完了(指针越过了该数的第一位),则看作是 0 来处理。
计算当前位的和,并保存结果。
如果当前位的和超过 10,就计算进位。
步骤 5:处理进位
每次加完一个数字后,我们需要处理进位。
如果加完某一位后进位不为零,继续将进位传递到下一位。
步骤 6:最后反转结果
最终得到的结果数组是从最低位到最高位存储的,所以我们需要将结果数组反转。
步骤 7:返回结果
输出最终得到的加法结果。
代码实现
#include <stdio.h>
#include <cstring>
int main(){
char num1[101] ={'\0'}, num2[101] = {'\0'}, result[102] = {'\0'};
scanf("%s %s", num1, num2);
int len1 = strlen(num1), len2 = strlen(num2);
int carry = 0;
int i = len1 - 1, j = len2 - 1, k = 0;
// 逐位加法
while (i >= 0 || j >= 0 || carry > 0){
char current1 = (i >= 0)? num1[i] - '0' : 0;
char current2 = (j >= 0)? num2[j] - '0' : 0;
int sum = current1 + current2 + carry;
// 将结果存储为字符
result[k] = sum % 10 + '0';
carry = sum / 10;
i--, j--, k++;
}
char final[102] = {'\0'};
// 反转字符串,result 数组的长度是 k
for (int t = 0; t < strlen(result); t++){
final[t] = result[strlen(result) - t- 1];
}
printf("%s", final);
return 0;
}