π之巴塞尔问题

π \pi π之巴塞尔问题

最近看了3blue1brown的巴塞尔问题演示, π \pi π 居然有现实的物理意义。感悟总结如下:
巴塞尔问题是一个著名的级数问题,这个问题首先由皮耶特罗·门戈利在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的素数个数》(On the Number of Primes Less Than a Given Magnitude)中所采用,论文中定义了黎曼ζ函数,并证明了它的一些基本的性质。这个问题是以瑞士的第三大城市巴塞尔命名的,它是欧拉和伯努利家族的家乡。
巴塞尔问题要求计算所有自然数平方的倒数之和,即:
∑ n = 1 ∞ 1 n 2 = π 2 6 \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} n=1n21=6π2
以下是一种基于几何构造的巧妙证明方法,通过光的叠加原理和圆的分形展开揭示级数与圆周率的关系


一、问题转换:光强模型

假设在一条无限长的直线上均匀分布着灯塔,第k座灯塔与观察者的距离为k。根据反平方衰减定律,第k座灯塔的光照强度为 1 k 2 \frac{1}{k^2} k21。总光强即为所求级数:
S = 1 1 2 + 1 2 2 + 1 3 2 + ⋯ S = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots S=121+221+321+


二、几何构造:圆的分形展开

步骤1:初始圆与光强计算

  1. 构造周长为2的圆,其直径为 2 π \frac{2}{\pi} π2
  2. 在圆的两端点A与H处放置灯塔(H为观察者位置),光强为:
    1 ( 2 / π ) 2 = π 2 4 \frac{1}{(2/\pi)^2} = \frac{\pi^2}{4} (2/π)21=4π2
    这对应总光强 S 1 = π 2 4 S_1 = \frac{\pi^2}{4} S1=4π2

步骤2:分形替换与递推

  1. 将圆直径加倍,构造周长为4的新圆。通过几何替换:
    • 原端点灯塔被两座新灯塔替代,位于新圆与初始圆的切线交点。
    • 新灯塔的光强满足:
      1 ( 2 2 / π ) 2 + 1 ( 2 2 / π ) 2 = 1 ( 2 / π ) 2 = π 2 4 \frac{1}{(2\sqrt{2} /\pi)^2} + \frac{1 }{(2\sqrt{2} /\pi)^2} = \frac{1}{(2/\pi)^2} =\frac{\pi^2}{4} (22 /π)21+(22 /π)21=(2/π)21=4π2
      从而 S 2 = π 2 4 S_2 = \frac{\pi^2}{4} S2=4π2 保持守恒
      如下图1 ,图2 所示,满足倒数勾股定理:
      借用3blue1brown的截图 图1
      在这里插入图片描述

图2:
在这里插入图片描述
在这里插入图片描述

步骤3:无限分形过程

  1. 重复直径加倍操作,每次将圆扩大2倍:
    • 第n次操作后,圆周被 2 n + 1 2^{n+1} 2n+1 座灯塔等分,相邻灯塔弧距为 2 2 n \frac{2}{2^n} 2n2
    • 总光强始终为 S n = π 2 4 S_n = \frac{\pi^2}{4} Sn=4π2,且奇数项光强占比逐渐显现。

三、极限分析与级数分解

关键定理:倒数勾股定理

对于直角三角形斜边上的高h,有:
1 h 2 = 1 a 2 + 1 b 2 \frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2} h21=a21+b21
在这里插入图片描述

通过递归应用该定理,可得:
π 2 4 = ∑ k = 0 ∞ ( 1 ( 2 k + 1 ) 2 ) × 2 \frac{\pi^2}{4} = \sum_{k=0}^{\infty} \left( \frac{1}{(2k+1)^2} \right) \times 2 4π2=k=0((2k+1)21)×2
奇数平方倒数和 π 2 8 \frac{\pi^2}{8} 8π2

偶数项分离

其中当奇数项无限递归,弦长等于弧长,最终圆极限就是一条直线,可以看做我们的x轴,当弦长用对应弧长表示为下列式子:
π 2 8 = 1 L n , 1 2 + 1 L n , 3 2 + 1 L n , 5 2 − 1 L n , 7 2 + 1 L n , 9 2 + ⋯ + 1 L n , 2 n − 1 2 , 其中  L n , m = m \frac{\pi^2}{8} = \frac{1}{L_{n,1}^2} + \frac{1}{L_{n,3}^2} + \frac{1}{L_{n,5}^2} - \frac{1}{L_{n,7}^2} + \frac{1}{L_{n,9}^2} + \cdots + \frac{1}{L_{n,2n-1}^2}, \quad \text{其中 } L_{n,m} = m 8π2=Ln,121+Ln,321+Ln,521Ln,721+Ln,921++Ln,2n121,其中 Ln,m=m
↓ \downarrow

π 2 8 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + 1 1 1 2 + 1 1 3 2 + ⋯ \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \frac{1}{11^2} + \frac{1}{13^2} + \cdots 8π2=121+321+521+721+921+1121+1321+

3 4 x = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + 1 1 1 2 + 1 1 3 2 + ⋯ \frac{3}{4}x = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \frac{1}{11^2} + \frac{1}{13^2} + \cdots 43x=121+321+521+721+921+1121+1321+

π 2 6 = x = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 + 1 7 2 + ⋯ \frac{\pi^2}{6} = x = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \cdots 6π2=x=121+221+321+421+521+621+721+

将级数分为奇数项和偶数项:
S = ∑ n = 1 ∞ 1 n 2 = ∑ 奇数 1 n 2 + ∑ 偶数 1 n 2 S = \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{\text{奇数}} \frac{1}{n^2} + \sum_{\text{偶数}} \frac{1}{n^2} S=n=1n21=奇数n21+偶数n21
其中偶数项可表示为:
∑ 偶数 1 n 2 = 1 4 S \sum_{\text{偶数}} \frac{1}{n^2} = \frac{1}{4} S 偶数n21=41S
联立方程解得:
S = π 2 8 + 1 4 S    ⟹    S = π 2 6 S = \frac{\pi^2}{8} + \frac{1}{4}S \implies S = \frac{\pi^2}{6} S=8π2+41SS=6π2


四、总结

通过几何分形构造和光的叠加原理,我们揭示了巴塞尔问题中平方倒数和与圆周率的深刻联系。这一证明方法直观展示了无穷级数的收敛性,并体现了数学中空间几何与分析的巧妙结合


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cmzhg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值