π \pi π之巴塞尔问题
最近看了3blue1brown的巴塞尔问题演示,
π
\pi
π 居然有现实的物理意义。感悟总结如下:
巴塞尔问题是一个著名的级数问题,这个问题首先由皮耶特罗·门戈利在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的素数个数》(On the Number of Primes Less Than a Given Magnitude)中所采用,论文中定义了黎曼ζ函数,并证明了它的一些基本的性质。这个问题是以瑞士的第三大城市巴塞尔命名的,它是欧拉和伯努利家族的家乡。
巴塞尔问题要求计算所有自然数平方的倒数之和,即:
∑
n
=
1
∞
1
n
2
=
π
2
6
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
n=1∑∞n21=6π2
以下是一种基于几何构造的巧妙证明方法,通过光的叠加原理和圆的分形展开揭示级数与圆周率的关系
一、问题转换:光强模型
假设在一条无限长的直线上均匀分布着灯塔,第k座灯塔与观察者的距离为k。根据反平方衰减定律,第k座灯塔的光照强度为
1
k
2
\frac{1}{k^2}
k21。总光强即为所求级数:
S
=
1
1
2
+
1
2
2
+
1
3
2
+
⋯
S = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots
S=121+221+321+⋯
二、几何构造:圆的分形展开
步骤1:初始圆与光强计算
- 构造周长为2的圆,其直径为 2 π \frac{2}{\pi} π2。
- 在圆的两端点A与H处放置灯塔(H为观察者位置),光强为:
1 ( 2 / π ) 2 = π 2 4 \frac{1}{(2/\pi)^2} = \frac{\pi^2}{4} (2/π)21=4π2
这对应总光强 S 1 = π 2 4 S_1 = \frac{\pi^2}{4} S1=4π2。
步骤2:分形替换与递推
- 将圆直径加倍,构造周长为4的新圆。通过几何替换:
- 原端点灯塔被两座新灯塔替代,位于新圆与初始圆的切线交点。
- 新灯塔的光强满足:
1 ( 2 2 / π ) 2 + 1 ( 2 2 / π ) 2 = 1 ( 2 / π ) 2 = π 2 4 \frac{1}{(2\sqrt{2} /\pi)^2} + \frac{1 }{(2\sqrt{2} /\pi)^2} = \frac{1}{(2/\pi)^2} =\frac{\pi^2}{4} (22/π)21+(22/π)21=(2/π)21=4π2
从而 S 2 = π 2 4 S_2 = \frac{\pi^2}{4} S2=4π2 保持守恒
如下图1 ,图2 所示,满足倒数勾股定理:
借用3blue1brown的截图 图1
图2:
步骤3:无限分形过程
- 重复直径加倍操作,每次将圆扩大2倍:
- 第n次操作后,圆周被 2 n + 1 2^{n+1} 2n+1 座灯塔等分,相邻灯塔弧距为 2 2 n \frac{2}{2^n} 2n2。
- 总光强始终为 S n = π 2 4 S_n = \frac{\pi^2}{4} Sn=4π2,且奇数项光强占比逐渐显现。
三、极限分析与级数分解
关键定理:倒数勾股定理
对于直角三角形斜边上的高h,有:
1
h
2
=
1
a
2
+
1
b
2
\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2}
h21=a21+b21
通过递归应用该定理,可得:
π
2
4
=
∑
k
=
0
∞
(
1
(
2
k
+
1
)
2
)
×
2
\frac{\pi^2}{4} = \sum_{k=0}^{\infty} \left( \frac{1}{(2k+1)^2} \right) \times 2
4π2=k=0∑∞((2k+1)21)×2
即 奇数平方倒数和 为
π
2
8
\frac{\pi^2}{8}
8π2。
偶数项分离
其中当奇数项无限递归,弦长等于弧长,最终圆极限就是一条直线,可以看做我们的x轴,当弦长用对应弧长表示为下列式子:
π
2
8
=
1
L
n
,
1
2
+
1
L
n
,
3
2
+
1
L
n
,
5
2
−
1
L
n
,
7
2
+
1
L
n
,
9
2
+
⋯
+
1
L
n
,
2
n
−
1
2
,
其中
L
n
,
m
=
m
\frac{\pi^2}{8} = \frac{1}{L_{n,1}^2} + \frac{1}{L_{n,3}^2} + \frac{1}{L_{n,5}^2} - \frac{1}{L_{n,7}^2} + \frac{1}{L_{n,9}^2} + \cdots + \frac{1}{L_{n,2n-1}^2}, \quad \text{其中 } L_{n,m} = m
8π2=Ln,121+Ln,321+Ln,521−Ln,721+Ln,921+⋯+Ln,2n−121,其中 Ln,m=m
↓
\downarrow
↓
π 2 8 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + 1 1 1 2 + 1 1 3 2 + ⋯ \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \frac{1}{11^2} + \frac{1}{13^2} + \cdots 8π2=121+321+521+721+921+1121+1321+⋯
3 4 x = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + 1 1 1 2 + 1 1 3 2 + ⋯ \frac{3}{4}x = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \frac{1}{11^2} + \frac{1}{13^2} + \cdots 43x=121+321+521+721+921+1121+1321+⋯
π 2 6 = x = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 + 1 7 2 + ⋯ \frac{\pi^2}{6} = x = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \cdots 6π2=x=121+221+321+421+521+621+721+⋯
将级数分为奇数项和偶数项:
S
=
∑
n
=
1
∞
1
n
2
=
∑
奇数
1
n
2
+
∑
偶数
1
n
2
S = \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{\text{奇数}} \frac{1}{n^2} + \sum_{\text{偶数}} \frac{1}{n^2}
S=n=1∑∞n21=奇数∑n21+偶数∑n21
其中偶数项可表示为:
∑
偶数
1
n
2
=
1
4
S
\sum_{\text{偶数}} \frac{1}{n^2} = \frac{1}{4} S
偶数∑n21=41S
联立方程解得:
S
=
π
2
8
+
1
4
S
⟹
S
=
π
2
6
S = \frac{\pi^2}{8} + \frac{1}{4}S \implies S = \frac{\pi^2}{6}
S=8π2+41S⟹S=6π2
四、总结
通过几何分形构造和光的叠加原理,我们揭示了巴塞尔问题中平方倒数和与圆周率的深刻联系。这一证明方法直观展示了无穷级数的收敛性,并体现了数学中空间几何与分析的巧妙结合