NumPy库入门

1.数据的维度

一维数据:一维数据由对等关系的有序或无序数据构成,采用线性方式组织

二维数据:二维数据由多个一维数据构成,是一维数据的组合形式。

多维数据:多维数据由一维或二维在新维度上扩展形成。

高维数据:高维数据仅利用最基本的二元关系展示数据间的复杂结果

2.NumPy的数组对象:ndarray

1)NumPy是一个开源的Python科学计算基础库

一个强大的N维数组对象:ndarray

2)NumPy的引用

import numpy as np

np:引入模块的别名

3)例子 计算A^2+B^3 其中,A和B是一维数组

一般:

def pySum():

    a=[0,1,2,3,4]

    b=[9,8,7,6,5]

    c=[]

    for i in range(len(a)):

        c.append(a[i]**2+b[i]**3)

    return c

print(pySum())

numpy:

import numpy as np

 

def npSum():

    a=np.array([0,1,2,3,4])

    b=np.array([9,8,7,6,5])

    c=a**2+b**3

    return c

print(npSum())

4)ndarray

ndarray是一个多维数组对象,由两部分组成:

实际的数据

描述这些数据的元数据(数据维度、数据类型等)

ndarray数组一般要求所有元素类型相同,数组下标从0开始

 

 

5)ndarray的数组类型

 

 

6)ndarray数组的创建

Python中的列表、元组等类型创建ndarray数组

x=np.array(list/tuple)

使用NumPy中函数创建ndarray数组,如arrange

 

 

 

 

 

 

从字节流中创建ndarray数组

从文件中读取特定格式,创建ndarray数组

7)ndarray数组的维度变换

 

8)ndarray数组的操作

数组的索引和切片

索引:获取数组中特定位置元素的过程。

切片:获取数组元素子集的过程。

9)ndarray数组的运算

np.abs(x) np.fabs(z)         计算数组各元素的绝对值

np.sqrt(x)                   计算数组各元素的平方根

np.square(x)                 计算数组各元素的平方

np.log(x)                    计算数组各元素的自然对数

np.ceil(x) np.floor(x)       计算数组各元素的ceiling值或floor值                 

np.rint(x)                   计算数组各元素的四舍五入值

np.modf(x)         将数组各元素的小数和整数部分以两个独立数组形式返回

np.cos(x)                    计算数组各元素的普通型三角函数

np.exp(x)                    计算数组各元素的指数值

np.sign(x)                   计算数组各元素的符号值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mind_programmonkey

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值