google小恐龙

小恐龙是谷歌浏览器里面的一个内部游戏在断网的情况下就可以玩这个游戏在这里插入图片描述

以上就是个示例图

那么就在这个时候我很好奇 这个东西在有网的时候可不可以玩呢?

别说 还真可以 只需要输入一段网址即可(chrome://dino)
小恐龙

然后呢 给大家介绍一下这个游戏(总感觉不需要介绍了)

1.一开始只有小恐龙和仙人掌 只需要按下跳跃键 即空格键或者说上箭头键
2.到了500分的时候 就会出现小鸟 高处的小鸟不能跳 跳了触碰了他就会阵亡;而中处的小鸟则可以按跳跃键或者让恐龙低头 即按下下箭头键。
3.每过了700分时就会出现一下黑夜,背景会变成白色的。
4.(这个东西不知道是不是假的)听别人说打过来7000分之后会出现陨石,虽然说我觉得这个不太靠谱。

那么今天就介绍到这里了 别忘记点个赞哦!

### YOLOv8 训练代码潜在错误分析 在检查 `ultralytics` 提供的 YOLOv8 模型训练代码时,需关注以下几个方面来判断是否存在可能的错误: #### 数据配置文件路径 数据集配置文件通常是个 `.yaml` 文件,在代码中通过 `data` 参数指定。如果路径不正确或者文件不存在,则会引发异常。例如: ```python model.train(data='coco128.yaml', epochs=100, imgsz=640) ``` 上述代码假设当前工作目录下存在名为 `coco128.yaml` 的文件[^1]。如果没有找到该文件,程序可能会抛出 FileNotFoundError 或类似的错误。 #### 预训练模型加载方式 加载预训练模型的方式有多种可能性。以下是几种常见方法及其适用场景: - **从 YAML 定义创建新模型并加载权重** ```python model = YOLO('yolov8n.yaml').load('yolov8n.pt') ``` 此处需要注意的是,YAML 文件定义了网络结构,而 `.pt` 文件包含了实际的权重值。两者必须匹配,否则可能导致维度不致等问题。 - **直接加载预训练模型** ```python model = YOLO('yolov8n.pt') ``` 这是最常用的方法之,适用于大多数情况下的迁移学习任务。 #### 训练参数设置 对于训练过程中的超参数调整,以下是些常见的选项以及它们的作用说明: - `epochs`: 总共迭代次数,默认为 100 轮。 - `imgsz`: 输入图像尺寸大小,默认为 640 像素。 - `batch`: 批量处理样本数量,默认情况下取决于硬件资源可用性[^2]。 另外还有其他可选参数如设备选择 (`device`) 和项目保存位置 (`project`) 等也可以自定义设定。 综上所述,只要确保所使用的各个组件之间相互兼容,并且所有必需输入都已正确定位提供给函数调用即可有效减少发生逻辑上的失误几率。 ```python from ultralytics import YOLO # 初始化模型 model = YOLO('yolov8n.yaml').load('yolov8n.pt') # 开始训练流程 model.train( data="path/to/your/coco128.yaml", # 替换为实际的数据集配置文件绝对路径 epochs=100, imgsz=640 ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值