【动态规划】【单调队列】最大子序列的和 (max.c/cpp/pas)

最大子序列的和 (max.c/cpp/pas)

LazyChild有一个长度为N的整数序列(a1,a2,…,an),他希望你从中找出一段连续的长度不小于A,且不超过B的子序列,使得这个子序列的和最大。

例如:1,-3,5,1,-2,3。

当A=2,B=2或3时  S=5+1=6。当A=3,B=4时  S=5+1+(-2)+3=7

【输入文件】

第一行三个整数N,A,B(1<=A<=B<=N)。

第二行为N整数,每个整数用空格隔开,表示该整数序列。

【输出文件】

一行一个整数,为最大子序和。

【样例输入】

6 3 4

1 -3 5 1 -2 3

【样例输出】

7

【数据规模和约定】

对于30%的数据,N<=1000

对于另外30%的数据, A = 1且 B = n。

对于100%的数据,N<=500000。


对于30% N <= 1000的情况可以直接用前缀和优化枚举O(N^2)可以通过

对于另外30%的数据,A = 1且 B = n 相当于特殊化了题目直接DP

方程

F[i] = max(F[i - 1] + num[i], num[i])

O(N)可以通过

而对于100%的数据

F[i] = max{sum[i] - min(s[j - 1])} 

时间复杂度最坏O(N^2)

所以需要队列优化

首先如果队首过期了(也就是达到区间上届(说白了就是i - q[l] > Max))就出队

然后如果队尾的元素不可能有将要入队的元素优(也就是说将要入队的元素的sum值比队尾元素大或相等(相等也要讲队尾剔除 因为将要入队的元素更新,更有机会刷新解))

最终队首的元素就是方程中的s[j - 1]

代码如下

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;

int N, Min, Max;
int MAX = -999999999 + 5;
int Q[500050];
int sum[500050];

void init_file()
{
    freopen("max.in", "r", stdin);
    freopen("max.out", "w", stdout);
}

void read_data()
{
    scanf("%d%d%d", &N, &Min, &Max);
    for(int i = 1; i <= N; i++)
    {
        int x;
        scanf("%d", &x);
        sum[i] = sum[i - 1] + x;
    }
}

void work()
{
    int l = 0;
    int r = 0;
    r ++;
    Q[r] = 0;
    int ans = -0x3f3f3f3f;
    for(int i = Min; i <= N; i++)
    {
        while(l<r && i - Q[l+1] > Max) l++;
        while(l<r && sum[Q[r]]>=sum[i-Min]) r--;
        Q[++r] = i-Min;
        ans = max(ans,sum[i]-sum[Q[l+1]]);
    }
    printf("%d",ans);
}

int main()
{
    init_file();
    read_data();
    work();
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值