- 博客(12)
- 收藏
- 关注
原创 一种基于密度峰值的聚类算法
一种基于密度峰值的聚类算法1.引入2014年Science刊发了一篇标题为Clustering by fast search and find of density peaks的文章,文章中介绍了一种基于密度峰值的聚类算法。传统的聚类算法k-means,通常不适用于非球形的簇。这里所谓的球形簇是根据k-means算法基本原理得到的。为了解释这个所谓的球形簇,在这里简单的回忆一下k-means...
2018-11-26 23:38:53 9475 2
原创 用python+tensorflow让电脑认识你的脸
引入 深度神经网络已经应用在很多方面,同时图像识别是神经网络最具潜力的应用领域。本文将以人脸识别的demo为例,介绍神经网络在图像识别中的应用。1.程序用到的库 (1)tensorflow:它是一个极其强大的神经网络库,对python有较好的支持。 (2)dlib:它是一款C++的开源工具包,可以进行人脸检测。 (3)open-cv:机器视觉领域极其强大的库,可以进行图像的处理。 (...
2018-08-20 21:19:38 1584
原创 深度学习中的Batch Normalization
Batch Normalization 假设我们有两组training data:x1=[1,2,3,⋯]" role="presentation">x1=[1,2,3,⋯]x1=[1,2,3,⋯]x^1=[1,2,3,\cdots],x2=[100,200,300,⋯]" role="presentation">,x2=[100,200,300,⋯],x2=[100
2018-02-01 12:15:33 593
原创 tensorflow_gpu(cpu)+keras for windows 配置过程
本文介绍tensorflow以及keras在win10上的配置过程: 一.相关软件介绍 (1)CUDA CUDA是英伟达公司推出的通用并行计算架构,该架构能够使得GPU解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,现在,该架构已应用于GeForce™(精视™)、ION™(翼扬™)、Quadr...
2018-01-29 22:49:15 1553 4
原创 机器学习 学习记录六
本篇博客将介绍Semi-Supervised Learning的实现方法 介绍: 之前我们所介绍的机器学习所提到的数据都是带有Label的。而现实是,搜集这些带有Label的数据并不是一件简单的事情,但是搜集一些不带有Label的数据就要容易很多。Semi-Supervised Learning指的是就是在利用一些带有Label和一些不带有Label的数据进行机器学习。 图片引
2018-01-18 22:34:16 482
原创 卷积神经网络与全相联网络的对比以及卷积神经网络的梯度递减实现方法
本篇博客主要介绍一下卷积神经网络与全相联网络的对比,然后介绍卷积神经网络的梯度递减法如何从全相联网络的梯度递减法推导。 假设有上面一张图片,需要经过卷积层,我们的卷积核如下图所示 经过卷积得到如下图片: 我们给这些图片矩阵从左到右,从上到下编号并且展开得到下面的网络结构卷积网络图 全相联网络图 将卷积网络图与全相联网络图进行对比,我们能够发现: 1.卷积网络可以看成一
2018-01-11 21:32:07 494
原创 机器学习 学习记录(五)
本篇将介绍卷积网络的内容。在正式介绍卷积神经网络(Convolutional Neural Network简称CNN)之前,我想先回忆一下,卷积的概念,以便能够更好地理解卷积神经网络,并且能够从另外一个角度去理解卷积神经网络的实现原理。 在大学数学分析里傅里叶变换一章曾经介绍过卷积的概念 x(t)∗h(t)=∫+∞−∞x(τ)h(t−τ)dτx(t)*h(t)=\int_{-\infty}^{
2018-01-04 16:03:22 403 1
原创 机器学习 学习记录(四)
本篇博客将介绍深度学习时所用到的一些Tips。 我们知道,机器学习的三大步骤(Function Set, Goodness of Function, Pick up The Best Function),那如果我们最终得到的结果坏掉了怎么办。如果坏掉了,到底是这三步的哪一个步骤出现了问题呢? 结果的坏掉有两种情况,一种是训练数据的符合率很低,还有一种是测试数据的命中率比较低。在第一种情况下,很可
2017-12-27 15:37:57 378
原创 机器学习 学习记录(三)
本篇博客将着重介绍深度学习的相关知识 上篇,我们提到了逻辑回归的方法,这种方法用来处理分类问题,从上篇博客中,我们也知道了逻辑回归的一些局限性。有的时候类别并不能直接被一条直线分开,这个时候就需要我们采用特征变换的方法来将所用的特征变换到可以被直线分开的状态,。通常这种特征变换的方法比较难找,不容易得到,所以我们就思考有没有一种简单有效的方法来避开特征变换。事实上是有的。这种方法就是我们所说的深度
2017-12-22 09:55:33 315
原创 机器学习 学习记录(二)
本篇博客将接着《机器学习 学习记录》继续阐述机器学习的相关知识2.Logistic Regression在上一篇博客中,我们了解了机器学习里最简单的模型Linear Regression,这个模型用于回归问题,而当我们需要处理一个分类问题的时候,想一想线性回归的模型还能不能用?请看下面的两张图图1 图2 对于图1的情况来说,如果对该组数据做Regression理论上是可以得到一个比较好的结果
2017-12-20 22:25:11 301
原创 STM32单片机上位机程序代码(供参考)(基于C#开发)
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;using System.Windows;using System.IO.Ports;using System.Threading;using System.Win
2017-12-19 22:02:34 11063 4
原创 机器学习 学习记录(一)
机器学习 学习记录将从以下三个方面讲述机器学习的第一周学习进度: 1. Linear Regression 2. Logistic Regression 3. Deep Learning在具体阐述各个方面之前,我们先要明确一个基本问题:What is machine learning?其实机器学习的概念在很早之前就被提出,在近几年再一次火了起来。本质上来说机器学习无非就是让计算机从你的
2017-12-19 18:38:14 524
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人