中国剩余定理

中国剩余定理 Lintcode 727

已知:
给出两个数组 num[0..k - 1] 和 rem[0..k - 1]. 在数组num[0..k - 1]中, 所有的元素都是互质的( gcd 为 1 ). 我们需要找到满足下列条件的最小正数 x:

 x % num[0]    =  rem[0], 
 x % num[1]    =  rem[1], 
 .......................
 x % num[k-1]  =  rem[k-1] 

示例:

给出 nums = [3,4,5], rems = [2,3,1], 返回 11
11 是满足以下条件的最小值:
- 除以 3, 得到余数 2.
- 除以 4, 得到余数 3.
- 除以 5, 得到余数 1. 

思路:
除去最简单粗暴的思路,一个可行的想法:
首先,我们找到除3余2的数字,2,5,8,11…
然后,我们找到除4余3的数字,3,7,11,15…

  • 可知此时11位满足上述条件的最小数字,那下一位数字是谁呢?
  • 3,4的最小公倍数是12,也就是11+12,11+12+12等等都满足除3余2和除4余3的条件 ==>也就是说,除3余2 + 除4余3合并为除12余11

除12余11和除5余1的共同最小数字为11,如果范例数组后面还有,则除12余11和除5余1合并为除60余11,然后和后面的数据进行计算

根据以上思路,代码整理如下:

public class Solution {
    public int remainderTheorem(int[] num, int[] rem) {
        //temp是上文的最小公倍数,因为数组本身互质,递归时直接相乘即可
        int temp = num[0];
        //ret指的是到下标为X时的结果,初始化为下标为0时的数据
        int ret = rem[0];
        for (int i = 1; i < num.length; i++) {
            for (int j = 0;; j++) {
                //找到满足条件的最小整数
                if ((ret + temp * j) % num[i] == rem[i]) {
                    ret = ret + temp * j;
                    temp *= num[i];
                    break;
                }
            }
        }
        return ret;
    }
}

虽然这道题难度是最高级别的,但是思路似乎没那么难,而且代码量也不高~谢谢您的阅读,希望对您有所帮助^_^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值