中国剩余定理 Lintcode 727
已知:
给出两个数组 num[0..k - 1] 和 rem[0..k - 1]. 在数组num[0..k - 1]中, 所有的元素都是互质的( gcd 为 1 ). 我们需要找到满足下列条件的最小正数 x:
x % num[0] = rem[0],
x % num[1] = rem[1],
.......................
x % num[k-1] = rem[k-1]
示例:
给出 nums = [3,4,5], rems = [2,3,1], 返回 11
11 是满足以下条件的最小值:
- 除以 3, 得到余数 2.
- 除以 4, 得到余数 3.
- 除以 5, 得到余数 1.
思路:
除去最简单粗暴的思路,一个可行的想法:
首先,我们找到除3余2的数字,2,5,8,11…
然后,我们找到除4余3的数字,3,7,11,15…
- 可知此时11位满足上述条件的最小数字,那下一位数字是谁呢?
- 3,4的最小公倍数是12,也就是11+12,11+12+12等等都满足除3余2和除4余3的条件 ==>也就是说,除3余2 + 除4余3合并为除12余11
除12余11和除5余1的共同最小数字为11,如果范例数组后面还有,则除12余11和除5余1合并为除60余11,然后和后面的数据进行计算
根据以上思路,代码整理如下:
public class Solution {
public int remainderTheorem(int[] num, int[] rem) {
//temp是上文的最小公倍数,因为数组本身互质,递归时直接相乘即可
int temp = num[0];
//ret指的是到下标为X时的结果,初始化为下标为0时的数据
int ret = rem[0];
for (int i = 1; i < num.length; i++) {
for (int j = 0;; j++) {
//找到满足条件的最小整数
if ((ret + temp * j) % num[i] == rem[i]) {
ret = ret + temp * j;
temp *= num[i];
break;
}
}
}
return ret;
}
}
虽然这道题难度是最高级别的,但是思路似乎没那么难,而且代码量也不高~谢谢您的阅读,希望对您有所帮助^_^