UVA - 120 Stacks of Flapjacks(构造法)

题目链接:UVA - 120 Stacks of Flapjacks

题目大意:
给你一叠薄煎饼,请你写一个程序来指出要如何翻转才能使这些薄煎饼按半径由小到大排好。所有的薄煎饼半径均不相同。
解题思路:
模拟叠煎饼的过程即可,每次先将最大的煎饼翻到最上方,再将其翻转到相应位置,输入过程用字符串输入。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cstdio>
using namespace std;
char data[1005];
int a[1005];
void swa(int l, int r) //翻转从l 到 r 的树
{
    int len = (l + r) / 2, i;
    for(i = l; i <= len; i++)
    {
        int t = a[i];
        a[i] = a[r - (i - l)];
        a[r - (i - l)] = t;
    }
    return ;
}
int main()
{
    std::ios::sync_with_stdio(0);
    while(gets(data)) //字符串读入数据
    {
        int len = strlen(data), p = 0, num = 0;
        for(int i = 0; i < len; i++) //将字符串处理成整数序列
        {
            if(data[i] >= '0' && data[i] <= '9')
            {
                num *= 10;
                num += data[i] - '0';
            }
            else
            {
                a[++p] = num;
                num = 0;
            }
        }
        a[++p] = num; //将最后一个数放入整数序列中
        for(int i = 1; i <= p; i++) //输出整数序列
        {
            if(i == 1)printf("%d", a[i]);
            else printf(" %d", a[i]);
        }
        printf("\n");
        swa(1, p); //模拟翻转过程
        for(int k = 1; k <= p; k++)
        {
            int maxx = k;  //找未排好序列中最大的数
            for(int i = k; i <= p; i++)
            {
                if(a[i] > a[maxx])maxx = i;
            }
            if(maxx == k)continue; //如果在正确的位置则不需要移动
            else if(maxx == p) //如果在顶端则只需要翻转一次
            {
                swa(k, p);
                printf("%d ", k);
            }
            else //如果在其他位置则需要翻转两次
            {
                swa(maxx, p);
                swa(k, p);
                printf("%d %d ", maxx, k);
            }
        }
        printf("0\n");

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值