题意:n个瓶子,每个瓶子有形状颜色两种属性,且这两种属性都有36个类型,告诉你这些瓶子的两种属性的类型,求最大的k满足存在k*k个瓶子,使得这些瓶子的两种属性有k个类型,且覆盖了k*k个属性组合。
本菜菜每天水水题,这题一开始想暴力搜索,但是真心不会统计每种形状中出现的相同情况的装饰,只能百度了一发位运算,本题就是要选出k种形状,每种形状对应了同样的k种装饰,所以有k*k种组合,位运算可以很快的一步一步比较前面情况形状共同对应的装饰和下一个形状对应的装饰中,相同的情况是否比当前m大。下面是代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long LL;
LL state[40];//记录每种形状出现多少种装饰
int p;
int check(LL cnt)
{
int t=0;
for(;cnt;cnt>>=1)
t+=(cnt&1);//记录cnt中多少位为1,即两种形状有多少个相同的装饰
return t;
}
void dfs(int m,int q,LL cnt)
{
if(p<m) p=m;
for(;q<=36;q++)
{
if(check(cnt&state[q])>=m+1)
dfs(m+1,q+1,cnt&state[q]);
}
}
int main()
{
int t,n,a,b;
scanf("%d",&t);
while(t--)
{
p=0;
memset(state,0,sizeof(state));
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d %d",&a,&b);
state[a]|=(1LL<<b);//用位或运算可以记录每种形状出现装饰的次数
}
dfs(0,1,(1LL<<36)-1);//state的值>=2
printf("%d\n",p);
}
return 0;
}