UVa10635 Prince and Princess ACM解题报告(LCS与LIS的转化+单调栈+二分查找代替DP)

这题给出一个长p+1和一个长q+1的序列,然后找他们的LCS,由于数据量比较大,有62500多,并且两个序列中都没有重复出现的数字,即可给每个数字标号,给第一序列标号乘1,2,3,4,。。。。,p+1,于是第二个序列中对应用编号代替原来的数字。此时两个序列的LCS即第二个序列的LIS(巧妙地转化问题缩小规模),但是62500的数据量用O(n^2)的dp查找还是会爆(我TLE了三次),于是我网上学习了一发LIS的O(nlogn)算法,即单调栈+二分查找。算法的思路为:

这个算法其实已经不是DP了,有点像贪心。至于复杂度降低其实是因为这个算法里面用到了二分搜索。本来有N个数要处理是O(n),每次计算要查找N次还是O(n),一共就是O(n^2);现在搜索换成了O(logn)的二分搜索,总的复杂度就变为O(nlogn)了。

这个算法的具体操作如下(by RyanWang):

开一个栈,每次取栈顶元素top和读到的元素temp做比较,如果temp > top 则将temp入栈;如果temp < top则二分查找栈中的比temp大的第1个数,并用temp替换它。 最长序列长度即为栈的大小top。

这也是很好理解的,对于x和y,如果x < y且Stack[y] < Stack[x],用Stack[x]替换Stack[y],此时的最长序列长度没有改变但序列Q的''潜力''增大了。

举例:原序列为1,5,8,3,6,7

栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。

下面看代码
#include<iostream>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<stack>
using namespace std;
#define MAX 105
typedef long long LL;
const double pi=3.141592653589793;
const int INF=1e9;
const double inf=1e20;
int a[63000],b[63000],c[63000];
int n,p,q;
int main()
{
    int t,k,kase=0;
    cin>>t;
    while(t--)
    {
        kase++;
        scanf("%d%d%d",&n,&p,&q);
        memset(a,0,sizeof(a));
        memset(c,0,sizeof(c));
        for(int i=1;i<=p+1;i++)
        {
            scanf("%d",&k);
            a[k]=i;
        }
        int count=0;
        for(int i=1;i<=q+1;i++)
        {
            scanf("%d",&k);
            if(a[k]) b[count++]=a[k];
        }
        int top=0;
        c[0]=0;
        for(int i=0;i<count;i++)
        {
            if(c[top]<b[i]) c[++top]=b[i];
            if(c[top]>b[i])
            {
                int low=1,high=top,mid;
                while(low<=high)
                {
                    mid=(low+high)/2;
                    if(b[i]>c[mid]) low=mid+1;
                    else high=mid-1;
                }
                c[low]=b[i];
            }
        }
        printf("Case %d: %d\n",kase,top);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值