hdu 5313 (二分图染色+bitset或贪心) (bc周年庆第四题)

hdu 5313

题意:给你一个二分图,然后问你最多加多少边能变成完全二分图

题解:先dfs染色,求出每个子图中的黑白的个数,然后应该就是dp,每个子图取黑色或白色,最后二分图两边的点为x和y,x+y=n,然后求x×y最大

然而这题不满足dp的复杂度,百度了个bitset,看着挺好用的样子,不过手残写错了几次。

然后题目里说有重边,也不知道他到底有没有,直接减去m也对

bitset:

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <bitset>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")

using namespace std;
#define   MAX       10005
#define   MAXN      2000005
#define   lson      l,m,rt<<1
#define   rson      m+1,r,rt<<1|1
#define   lrt       rt<<1
#define   rrt       rt<<1|1
#define   mid       int m=(r+l)>>1
#define   LL        long long
#define   ull       unsigned long long
#define   mem0(x)   memset(x,0,sizeof(x))
#define   mem1(x)   memset(x,-1,sizeof(x))
#define   meminf(x) memset(x,INF,sizeof(x))
#define   lowbit(x) (x&-x)

const LL     mod   = 1000000;
const int    prime = 999983;
const int    INF   = 0x3f3f3f3f;
const int    INFF  = 1e9;
const double pi    = 3.141592653589793;
const double inf   = 1e18;
const double eps   = 1e-10;

/**************读入外挂**********************/
inline int read_int(){
    int ret=0;
    char tmp;
    while(!isdigit(tmp=getchar()));
    do{
        ret=(ret<<3)+(ret<<1)+tmp-'0';
    }while(isdigit(tmp=getchar()));
    return ret;
}
/*******************************************/

struct Edge{
    int v,next;
}edge[200005];

struct cha{
    int a,b;
    bool operator < (const cha &e)const{
        return a-b>e.a-e.b;
    }
}p[MAX];
int head[MAX];
int col[MAX];
int num1[MAX];
int num2[MAX];
set<int> s[MAX];
int tot;
int cnt;
int n,m;
int sum1,sum2;

void add_edge(int a,int b){
    edge[tot]=(Edge){b,head[a]};
    head[a]=tot++;
}

void init(){
    mem1(head);
    mem0(col);
    mem0(num1);
    mem0(num2);
    tot=0;
    cnt=0;
    for(int i=1;i<=n;i++) s[i].clear();
}

void dfs(int u){
    for(int i=head[u];i!=-1;i=edge[i].next){
        int v=edge[i].v;
        if(!col[v]){
            col[v]=-col[u];
            if(col[v]==1) sum1++;
            else sum2++;
            dfs(v);
        }
    }
}

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        init();
        int tmp=0;
        for(int i=1;i<=m;i++){
            int a,b;
            scanf("%d%d",&a,&b);
            add_edge(a,b);
            add_edge(b,a);
            if(s[a].count(b)) continue;
            tmp++;
            s[a].insert(b);
            s[b].insert(a);
        }
        for(int i=1;i<=n;i++){
            if(!col[i]){
                sum1=1;
                sum2=0;
                col[i]=1;
                dfs(i);
                p[cnt++]=(cha){max(sum1,sum2),min(sum1,sum2)};
            }
        }
        bitset<10001> bi;
        bi.set(0);
        for(int i=0;i<cnt;i++){
            bi=bi<<p[i].a|bi<<p[i].b;
        }
        for(int i=n/2;i>0;i--){
            if(bi[i]){
                printf("%d\n",i*(n-i)-tmp);
                break;
            }
        }
    }
    return 0;
}

然后感觉贪心貌似也可以啊,一个子图里面黑色a,白色b个,然后先按照每个子图黑白之差排序,然后二分图的两侧,少的那一侧就加子图多的那部分点

感觉应该也没问题啊虽然百度说可能有错,但是也能AC

贪心还是要敢于写,毕竟这题dp TLE的概率远大于贪心WA的概率

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <bitset>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")

using namespace std;
#define   MAX       10005
#define   MAXN      2000005
#define   lson      l,m,rt<<1
#define   rson      m+1,r,rt<<1|1
#define   lrt       rt<<1
#define   rrt       rt<<1|1
#define   mid       int m=(r+l)>>1
#define   LL        long long
#define   ull       unsigned long long
#define   mem0(x)   memset(x,0,sizeof(x))
#define   mem1(x)   memset(x,-1,sizeof(x))
#define   meminf(x) memset(x,INF,sizeof(x))
#define   lowbit(x) (x&-x)

const LL     mod   = 1000000;
const int    prime = 999983;
const int    INF   = 0x3f3f3f3f;
const int    INFF  = 1e9;
const double pi    = 3.141592653589793;
const double inf   = 1e18;
const double eps   = 1e-10;

/**************读入外挂**********************/
inline int read_int(){
    int ret=0;
    char tmp;
    while(!isdigit(tmp=getchar()));
    do{
        ret=(ret<<3)+(ret<<1)+tmp-'0';
    }while(isdigit(tmp=getchar()));
    return ret;
}
/*******************************************/

struct Edge{
    int v,next;
}edge[200005];

struct cha{
    int a,b;
    bool operator < (const cha &e)const{
        return a-b>e.a-e.b;
    }
}p[MAX];
int head[MAX];
int col[MAX];
int num1[MAX];
int num2[MAX];
set<int> s[MAX];
int tot;
int cnt;
int n,m;
int sum1,sum2;

void add_edge(int a,int b){
    edge[tot]=(Edge){b,head[a]};
    head[a]=tot++;
}

void init(){
    mem1(head);
    mem0(col);
    mem0(num1);
    mem0(num2);
    tot=0;
    cnt=0;
    for(int i=1;i<=n;i++) s[i].clear();
}

void dfs(int u){
    for(int i=head[u];i!=-1;i=edge[i].next){
        int v=edge[i].v;
        if(!col[v]){
            col[v]=-col[u];
            if(col[v]==1) sum1++;
            else sum2++;
            dfs(v);
        }
    }
}

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        init();
        int tmp=0;
        for(int i=1;i<=m;i++){
            int a,b;
            scanf("%d%d",&a,&b);
            add_edge(a,b);
            add_edge(b,a);
            if(s[a].count(b)) continue;
            tmp++;
            s[a].insert(b);
            s[b].insert(a);
        }
        for(int i=1;i<=n;i++){
            if(!col[i]){
                sum1=1;
                sum2=0;
                col[i]=1;
                dfs(i);
                p[cnt++]=(cha){max(sum1,sum2),min(sum1,sum2)};
            }
        }
        bitset<10001> bi;
        bi.set(0);
        for(int i=0;i<cnt;i++){
            bi=bi<<p[i].a|bi<<p[i].b;
        }
        for(int i=n/2;i>0;i--){
            if(bi[i]){
                printf("%d\n",i*(n-i)-tmp);
                break;
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值