F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n)。其中%表示Mod,也就是余数。
例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3。
给出n,计算F(n), 由于结果很大,输出Mod 1000000007的结果即可。
Input
输入1个数N(2 <= N <= 10^12)。
Output
输出F(n) Mod 1000000007的结果。
Input示例
6
Output示例
3
这题n的范围很大,所以什么直接暴力啊都不行了
这题主要的是化简,n%i=n-floor(n/i)*i
所以F[n]=n*n-sigma(floor(n/i)*i)
然后就是枚举i咯,但是n有1e12,所以需要根号n的枚举,1-根号n,枚举i,然后根号n到n,枚举floor(n/i)
前面的枚举不需要说了,后面的枚举就是假设tmp=floor(n/i),然后取值的范围就是[n/(tmp+1)+1,n/tmp]
wa了几发,原来是中间算个数和floor相乘会爆LL,开头估计的时候感觉是不会爆炸的
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 1000005
#define MAXN 1000005
#define maxnode 15
#define sigma_size 30
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-8;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
int main(){
//freopen("in.txt","r",stdin);
LL n;
cin>>n;
LL xx=qpow(2LL,mod-2);
LL ans=(n%mod)*(n%mod)%mod;
LL ret=sqrt(n);
LL tmp=n/(ret+1);
for(int i=1;i<=tmp;i++){
ans=(ans-n/i*i)%mod;
}
//cout<<ans<<endl;
for(int i=n/(tmp+1);i>0;i--){
LL a=n/i;
LL b=n/(i+1)+1;
cout<<i<<" "<<b<<" "<<a<<endl;
LL cnt=(((LL)i*((a+b))%mod)*(a-b+1)%mod)*xx%mod;
ans=(ans-cnt)%mod;
}
cout<<(ans%mod+mod)%mod<<endl;
return 0;
}