http://acm.hdu.edu.cn/showproblem.php?pid=5720
这题其实是个简单题,但是我犯二了QAQ。
给你n个棒,然后问你在
[L,R]
的区间里,有多少种长度的棒加进去,和n个里任意两个都不会组成三角形。
如果选棒a,b,a是长的,那么可以覆盖的范围是
(a−b,a+b)
,所以为了使得覆盖的范围大,如果选了a,就必须选比他小的最大的那根,这样覆盖范围最大,所以可以排序,然后相邻的求出覆盖范围,把这些范围都合并,然后看在
[L,R]
里还有多少没有被覆盖的,就是答案。。。
讲道理这题这么水,不应该做错的,QAQ
代码:
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 100005
#define MAXN 1000005
#define maxnode 15
#define sigma_size 30
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-4;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
LL a[MAX];
int main(){
//freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--){
int n;
LL L,R;
cin>>n>>L>>R;
for(int i=0;i<n;i++) scanf("%I64d",&a[i]);
sort(a,a+n);
LL maxn=a[n-1]+a[n-2],mini=1e18;
vector<pair<LL,LL> > v;
for(int i=0;i<n-1;i++){
v.push_back(mk(a[i+1]-a[i],a[i]+a[i+1]));
}
sort(v.begin(),v.end());
LL ans=0;
LL tmp=L;
for(int i=0;i<v.size();i++){
if(v[i].first>=tmp) ans+=min(R,v[i].first)-tmp+1;
tmp=max(tmp,v[i].second);
if(tmp>R) break;
}
if(R>=tmp) ans+=R-tmp+1;
cout<<ans<<endl;
}
return 0;
}