x=a1k+b1=a2l+b2
x=b1(moda1),x=b2(moda2)
同余方程组,两个模数b1,b2不需要处理,直接扔进模版,L=max(max(b1,b2),L)
因为k,l≥0,所以L要取最大
求出来x之后,lcm(a1,a2)的加,求区间里有多少个点就行了
这题无解模版里不能返回−1,因为可能解就是−1
方法2是直接用exgcd求解
a1x+a2y=b2−b1
求出x,然后化成x的最小正数解形式
然后求出a1x+b1的最小解,然后L取b1,b2,L之间最大的
然后每步是lcm(a1,a2)
和上面一样求就行了
代码
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <bitset>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 10000005
#define MAXN 1000005
#define maxnode 205
#define sigma_size 26
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-4;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
vector<int> a,b;
LL mul(LL a,LL b,LL mod){
LL n = 0;
while(b){
if(b&1)
n = (n+a)%mod;
a = (a*2)%mod;
b /= 2;
}
return n;
}
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){x=1;y=0;d=a;return;}
else {exgcd(b,a%b,d,y,x);y-=a/b*x;}
}
LL labs(LL a){
if(a<0) return -a;
return a;
}
LL solve(){ //x=b[i](mod a[i])
LL ta=a[0],tb=b[0];
int flag=1;
for(int i=1;i<a.size();i++){
LL xa=ta,xb=a[i],c=b[i]-tb,d,x,y;
exgcd(xa,xb,d,x,y);
if(c%d){
flag=0;
break;
}
LL tmp=xb/d;
LL k=1;
if(x<0) k*=-1;
if(c/d<0) k*=-1;
x=(mul(labs(x),labs(c/d),tmp)*k+tmp)%tmp;//加入了二分快速乘,需要把负数先变为正数
tb=ta*x+tb;
ta=ta/d*a[i];
}
if(!flag) return -INF;
return tb;
}
LL gcd(LL x,LL y){
if(!y) return x;
return gcd(y,x%y);
}
LL lcm(LL x,LL y){
return x*y/gcd(x,y);
}
int main(){
LL a1,b1,a2,b2,L,R;
while(cin>>a1>>b1>>a2>>b2>>L>>R){
a.clear();b.clear();
a.push_back(a1);
a.push_back(a2);
b.push_back(b1);
b.push_back(b2);
LL cnt=solve();
L=max(max(b1,b2),L);
//cout<<cnt<<endl;
if(L>R){
cout<<0<<endl;
continue;
}
if(cnt==-INF){
cout<<0<<endl;
continue;
}
LL tmp=lcm(a1,a2);
LL ans=0;
if(cnt<=R) ans+=(R-cnt)/tmp+1;
if(cnt<L) ans-=(L-1-cnt)/tmp+1;
cout<<ans<<endl;
}
return 0;
}
代码2:
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <bitset>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 100005
#define MAXN 1000005
#define maxnode 205
#define sigma_size 26
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-4;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
void exgcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){x=1;y=0;d=a;return;}
else {exgcd(b,a%b,d,y,x);y-=a/b*x;}
}
LL labs(LL a){
if(a<0) return -a;
return a;
}
int main(){
LL a1,b1,a2,b2,L,R;
while(cin>>a1>>b1>>a2>>b2>>L>>R){
LL x,y,d;
exgcd(a1,a2,d,x,y);
if((b2-b1)%d!=0){
cout<<0<<endl;
continue;
}
x*=(b2-b1)/d;
x=(x%labs(a2/d)+labs(a2/d))%labs(a2/d);
LL cnt=x*a1+b1;
LL tmp=labs(a1*a2/d);
//cout<<cnt<<" "<<tmp<<endl;
LL ans=0;
L=max(L,max(b1,b2));
if(L>R){
cout<<0<<endl;
continue;
}
if(cnt<=R) ans+=(R-cnt)/tmp+1;
if(cnt<L) ans-=(L-1-cnt)/tmp+1;
cout<<ans<<endl;
}
return 0;
}