根据github的python100days练习来的小练习,每日打卡。
- 生成斐波那契数列的前20个数。
说明:斐波那契数列(Fibonacci sequence),又称黄金分割数列,是意大利数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)在《计算之书》中提出一个在理想假设条件下兔子成长率的问题而引入的数列,所以这个数列也被戏称为"兔子数列"。斐波那契数列的特点是数列的前两个数都是1,从第三个数开始,每个数都是它前面两个数的和,形如:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...。斐波那契数列在现代物理、准晶体结构、化学等领域都有直接的应用。
###方式一
a=b=1
for i in range(20):
if i <2:
print(1)
else:
a,b=b,a+b
print(b)
2.输出100以内所有的素数。
说明:素数指的是只能被1和自身整除的正整数(不包括1)。
for i in range(2,101):
isSUshu = True
for j in range(1,i):
if i % j ==0 and j !=1:
isSUshu = False
break
if isSUshu:
print(i)
else:continue
3.找出10000以内的完美数。
说明:完美数又称为完全数或完备数,它的所有的真因子(即除了自身以外的因子)的和(即因子函数)恰好等于它本身。例如:6(6=1+2+3)和28(28=1+2+4+7+14)就是完美数。完美数有很多神奇的特性,有兴趣的可以自行了解。
for i in range(1,10000):
sum=0
for j in range(1,i):
if i % j ==0:
sum += j
if sum==i or i ==1:
print(i)
else:continue
这篇博客通过Python实现了斐波那契数列的生成,展示了如何输出100以内的所有素数,并找到10000以内的完美数。这些经典算法不仅锻炼了编程技能,也揭示了数学与编程的紧密联系。
1771





